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Abstract: The waste collection stage generated 70% of the cost of the total Municipal Solid Waste 
(MSW) management system. Therefore, choosing the most affordable waste collection method is 
essential to accurately estimate the waste collection and transportation costs, thus selecting the 
required vehicle capacity. The study aims to design a waste collection system for calculating waste 
collection and transportation costs using a systematic framework that includes Hybridized Ant 
Colony Optimization (HACO) with Sequential Variable Neighborhood Search Change Step 
(SVNSCS) and Sequential Variable Neighborhood Decent (SVND). The framework addresses a 
Dynamic Capacity of Vehicle Routing Problem (DCVRP) and improves ACO's ability in 
exploration and exploitation stages. The objectives are to minimize the cost of travel distance and 
arrival time formulated in a mathematical model and to design a new strategy for eliminating the 
sub-tour problem in the following steps: (1) minimize the number of routes assigned, (2) increase 
the amount of waste in the vehicle capacity, and (3) define the best amount of waste allowed in 
vehicle capacity. The waste collection system compared HACO with ACO across four benchmark 
datasets. The results indicate HACO outperformance ACO at 100%, 91%, 100%, and 87%, 
respectively. The visualization results demonstrated that HACO has fast convergence and can be 
considered another essential tool for route optimization in the waste collection system. 
 
Keywords: Ant colony optimization; Dynamic capacity of vehicle routing problem; Sequential 
variable neighborhood search change step; Waste collection 
 

1. Introduction 
 
Recent studies show that most local governments in developing nations still struggle with managing 
MSW  [1], [2]. MSW involves several activities, including production, storage, disposal, treatment, 
recycling, collecting, and transportation to a transfer station before being dumped (landfill site) [3], 
[4]. Compared to other operations, the Solid Waste Collection (SWC) expense and transportation 
stage consume over 70% of the budget [5]. A study by Munyai and Nunu stated the increase in 
waste generation from 1.5 billion tons to 3.4 billion tons by 2025 worldwide [6]. In addition, a 
study by Silva et al. [7] confirmed about 2.01 billion tons of MSW annually, which is expected to 
reach 3.4 billion tons in 2050 globally. The increase in waste generation triggers serious action for 
appropriate needs and demands for good waste collection systems. 
 
Poorly managed waste causes the clogging of sewage channels, consequently flooding roads and 
spreading diseases [8], [9]. Moreover, an improper segregation system and inadequate waste 
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vehicles make the problem more complicated and challenging due to increased availability and 
quantity, which also deteriorates the environmental aspect [10]. The use of high-capacity vehicles 
to transport waste from the inner city's periphery to recycling centers outside the city is an 
additional concern [11]. Furthermore, fuel efficiency is significantly impacted by vehicle type, load 
weight, road inclination, and the distance traveled, which is a critical factor in determining fuel 
consumption [12]. However, due to capacity constraints and manual operation, these vehicles can 
only collect compact and dense waste materials, such as the contents of streetside garbage bins [13].  
 
Developing a software tool is necessary to manage efficient waste collection and sustainability [9]. 
Maximizing the profit of waste quantity can be done by eliminating sub-tour costs, which reduces 
the number of vehicles used. A typical example would be either a controller system method to 
reduce the time required for waste disposal or a vehicle routing method as a management system 
[14], [15]. These studies examined how vehicle capacity dynamics affected the vehicle routing 
problem and the best route selection in the waste collection system. Some variations, for example, 
minimizing route distance, strongly correlate with lowering waste collection costs [16]. 
 
This research encompasses multiple objective functions. The motivation to maximize the profit of 
waste quantity can be achieved by eliminating sub-tour costs, which reduces the number of vehicles 
used; consequently, the economic aspect increased. Furthermore, the task involves exploring 
optimal strategies (focusing on distance reduction) for efficient waste collection. This entails 
considering the geographical coordinates of collection points (specifically commercial sites) and the 
corresponding waste quantities generated within a defined geographical region. The next section 
discusses the variants in the literature concerning vehicle routing problems. It will define the 
research gap and highlight the proposed solution strategies for addressing the problem. 
 
2. Literature review  
 
Numerous studies have concentrated on using heuristic and metaheuristic algorithms to enhance 
waste processes [15]. Earlier studies aimed to minimize the cost of travel distance, time, and 
emissions with variables in the Vehicle Routing Problem (VRP) [17]. In the waste collection 
approach, the VRP has several variants in which the waste is picked up from a set of CPs and 
delivered to the destination. The variants can be subjected to a time window with a homogenous 
or heterogeneous vehicle fleet [18]. The Capacity of Vehicle Routing Problem (CVRP) also deals 
with a set of nodes or arcs and is known as the Capacity of Arc in Routing Problem (CARP) [19], 
[20]. As a result, the solid waste should be collected from the CPs, keeping in mind that the vehicle's 
capacity will decrease as it moves from one node to another. 
 
Henke et al. [21] proposed a study focused on utilizing a multi-compartment exclusively for 
classification waste purposes and determining the number of compartments the vehicle capacity can 
be divided and the size of each compartment. Along with other optimization problems, Li et al. 
[22] employed a Fuzzy Stochastic Quadratic Programming (SFQP) method for the best waste 
management to minimize collection and transportation costs. Note that the estimation costs depend 
on container size, cyclic waste collection, and collection time in each load. In addition, this 
technique has several complexities of mathematics. Ghiani et al. [23] utilized the Integer Linear 
Programming (ILP) model in two phases. The first phase combines heuristic with metaheuristic 
algorithms for the waste collection stage, and the second phase represents the heuristic approach 
for the waste transportation stage. The research employed a small vehicle capacity and aimed to 
decrease the number of vehicles used by incorporating the collection zone into the existing route, 
removing it from the collection zone, and revising the residual capacity and time. 
 
Another study employed two local searches involving hill climbing and tabu search to improve the 
features of the initial solution in terms of minimizing the total routing time, which was assigned for 
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the Sectoring-Arc Routing Problem (SARP) in residential waste collection [22]. Additionally, Ismail 
et al. [24] proposed a basic ACO algorithm to solve the travel salesman problem to minimize the 
route distance in a single route. This study has no evaluation to ensure the performance of the 
proposed methods. Nevertheless, the mathematical model applies to minor problems. 
 
Edwards et al. [25] verified that the constraints on MSW collection depend on the natural 
geography, traffic congestion, and inadequate transport infrastructures. For example, two studies 
conducted in Iraq demonstrated that traditional methods were still used for collecting and 
transporting waste [26], [27]. In the same context, a study conducted by Mat et al. [28] focused on 
reducing the number of vehicles used by solving a dynamic speed for the VRP. From the study, the 
dynamic travel speed of vehicles in a waste collection problem greatly affects the total travel time, 
total travel distance and the number of vehicles needed. According to the related work in the 
literature, Table 1 summarizes the analysis of most variants' problems and specifies which variants 
are still not presented, which inspired the current research. 
 

Table 1. Literature on Solid Waste Collection 
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[14] √ × √ × √ × × × × × √ × × × √ 
[16] √ × √ × √ × × × × × √ √ √ √ × 
[17] √ × √ × √ × √ × × × √ √ × × × 
[18] √ × √ × × × × × × × √ × × × √ 
[20] √ × √ × × √ × × √ × √ × × × √ 
[21] √ × √ × × √ × × × × √ √ × × √ 
[22] √ × √ × × × × × × × √ × × × × 
[24] √ × √ × × × × × × × √ × × × √ 
[26] √ × √ × × × × × × √ √ × × × √ 
This 
study √ √ √ √ √ × × √ √ × √ √ × √ √ 

 
Based on the literature review in Table 1, no study focused on solving the dynamic capacitated 
vehicle routing problem (DCVRP) to find optimal routes and lower the number of vehicles used to 
service all containers in a specific zone. Therefore, this study addresses this issue by hybridizing the 
ACO with sequential improvement procedures. This hybridized approach enhances the initial 
solution of the ACO algorithm, thus increasing the waste collection (WC) system's performance. 
Subsequently, the objectives of the study are presented as follows:  
 

1) To design a new systematic framework model by hybridizing ACO to increase its 
searchability in the exploration and exploitation stages. 

2) To design a new strategy to eliminate the sub-tour problem, thus reducing the number of 
routes to be collected.  

3) To identify the average vehicle speed variant and determine the arrival time at each CP. 
4) To analyze the effect of dynamic vehicle capacity on the VRP by adopting a novel vehicle 

capacity threshold. 
5) To evaluate the performance of the HACO with the Best-Known Solution (BKS) and its 

sensitivity in terms of the dynamic capacity of VRP.  
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3. Methods 
 
This section comprises of six essential stages: First, developing the theoretical foundations of the 
DCVRP problem using a homogeneous vehicles approach. The flowchart encompasses the 
hybridization of the proposed algorithm as well as the methods and techniques employed to enhance 
its performance, while also providing an overview of the optimization system's framework. Then, 
an explanation of the initial solution structure model and the details of the solution's parameters are 
discussed. Next, the operational mechanisms of the solution's demolition and construction model 
are clarified. Finally, an explanation of how the model determines the optimal solutions from 
among the iterations that are available. Moreover, in the case of heterogeneous vehicles, the 
theoretical framework underlying DCVRP and the work schedule for the technique that determines 
the optimal vehicle capacity for waste disposal is described. 
 
3.1 Formulation of the DCVRP model 
 

The DCVRP can be formulated schematically as 𝐺 =  (𝑁, 𝐸), where G represents the graph.  

Here, N represents a set of containers graphically distributed, 𝑁 =  0, 1 … , 𝑛, where the depot 
index is 0, and the other index represents the containers ranging from 1 to n. Meanwhile, E 

represents a set of edges called 𝑉 =  0, 1, . . . , 𝑛, where each edge (𝑖, 𝑗)  ∈  𝐸 =  {(𝑖, 𝑗): 𝑖, 𝑗 ∈

 𝑉, 𝑖 ≠  𝑗} [29]. The edge weights indicate the travel time 𝑡𝑖𝑗 and edge distance 𝑑𝑖𝑗 for each edge 

between two containers where (𝑖 ≠ 𝑗). Each container 𝑖 ∈  𝑉′ =  𝑉 \ {0} has a unique demand 

𝑞𝑖  refer to the amount of waste for 𝑖 =  1, 2, … , 𝑛 . The depot is the starting place for 

homogenous vehicles 𝑘 = 1, 2 . . . 𝐾, that serve each container without exceeding the capacity 

threshold of the vehicle 𝑄𝑘and return to the same depot upon completion of their route. This 
research will eventually analyze the dynamic influence of waste level on truck capacity while 
concurrently specifying the optimal route. 
 
The formulation of the entire waste collection system must be governed by a model with three 

decision variables dependent on vehicle capacity, 𝑄𝑘 and the amount of waste in each container. 

The first decision variable is 𝑋𝑖𝑗𝑘 = 1 if the vehicle k travels from container (i) to container (j) 

under the threshold of vehicle capacity. Otherwise, 𝑋𝑖𝑗𝑘 = 0, implying that the vehicle does not 

travel on the scheduled route, as shown in Eq. 1. 
 

𝑋𝑖𝑗𝑘 {
1, if the vehicle served the edge (𝑖, 𝑗), and 𝑇𝑜𝑡𝑎𝑙 𝑞𝑟 ≤  𝑇𝑘ℎ𝑜 

  
0,   Otherwise                                                     

  (1) 

 
where, 

 

𝑇𝑘ℎ𝑜:  threshold levels of homogenous vehicle capacity. 

𝑇𝑜𝑡𝑎𝑙 𝑞𝑟:   total amount of waste for each route. 
 
The second decision variable, 𝑢𝑘 = 1 if the vehicle has been maintained and is ready for usage by 
the driver and laborers. Otherwise 𝑢𝑘 = 0, and in this situation, the vehicle cannot be used based 
on Eq. 2. 
  

𝑢𝑘 = {
1,   If  𝑘𝑡ℎ vehicle used has been specified
 0, otherwise                                                     

   (2) 

𝑌𝑗𝑘 = {
1, if container i is visited by the vehicle 𝑘𝑡ℎ 
0, otherwise                                                          

   (3) 

 
The objective function to minimize the total distance for waste collection, Z, is defined in Eq. 4. 

https://unp.ac.id/
https://creativecommons.org/licenses/by/4.0/


 

42 

Teknomekanik, Vol. 7, No. 1, pp. 38-61, June 2024 
e-ISSN: 2621-8720   p-ISSN: 2621-9980 

 

©
 T

he
 A

ut
ho

r(
s)

  
P

ub
lis

he
d 

by
 U

ni
ve

rs
it

as
 N

eg
er

i P
ad

an
g.

 
T

hi
s 

is
 a

n 
op

en
-a

cc
es

s 
ar

ti
cl

e 
un

de
r 

th
e:

 h
tt

ps
:/

/
cr

ea
ti

ve
co

m
m

on
s.

or
g/

lic
en

se
s/

by
/

4.
0/

 
 

 
𝑍 = min ∑ ∑ ∑ 𝑑𝑖𝑗

𝐾
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 . 𝑋𝑖𝑗𝐾 + ∑ ∑ ∑ 𝑢𝑐

𝐾
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 . 𝑢𝑘 + ∑ ∑ ∑ 𝑡𝑖𝑗

𝐾
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 . 𝑋𝑖𝑗𝐾  (4) 

 
Where the first term, 𝑑𝑖𝑗 is used to calculate the total distance travelled concerning the decision 
variable 𝑋𝑖𝑗𝑘. Here, 𝑑𝑖𝑗 is a symmetrical matrix (𝑛 ×  𝑛), as shown in Eq. 5 [30]. 
 

𝑑𝑖𝑗 =  [

0 𝑑12 … 𝑑1𝑛

𝑑12 0 … 𝑑2𝑛

⋮
𝑑1𝑛

⋮
𝑑2𝑛

⋱
…

⋮
𝑑𝑛𝑛

]     (5) 

 

The second term 𝑢𝑐  is assigned for determining the cost of the vehicle when the choice variable 𝑢𝑘 

is considered. Meanwhile, the third term 𝑡𝑖𝑗 is used to calculate the cost of the travel time between 
containers (i) and (j), which is directly proportional to the Average Drive Speed (ADS) and the 
distance travelled, dij. Regarding the second objective function, the profit model can be applied to 

maximize the amount of waste collected, 𝑞𝑗 by the vehicle, as expressed in Eq. 6. 
 

Profit, 𝑃 = max ∑ ∑ ∑ 𝑞𝑗
𝐾
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 . 𝑋𝑖𝑗𝐾 > 0, 𝑗 ∈ {2, . . . 𝑛}  (6) 

 

The model of eliminating the sub-tour problem depends directly on the total amount of 𝑞𝑗 and the 

number of containers (𝑛) in each route. Hence, this model will be described fully in the section on 
resolving the sub-tour problem. The following constraints are considered when making the DCVRP 
model. 
 

∑ ∑ 𝑋0𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=1 = 1            (7) 

∑ 𝑞0𝑗𝑘 = 0,    ∀𝑛
𝑗=1 𝑘 = 1, 2 . . . 𝐾                       (8) 

∑ ∑ 𝑋𝑖0𝑘
𝐾
𝑘=1

𝑛
𝑖=1 = 1            (9) 

∑ 𝑋𝑖𝑗𝑘
𝐾
𝑘=1 = ∑ 𝑋𝑗𝑖𝑘

𝐾
𝑘=1 = 𝑌𝑗             (10) 

∑ ∑ ∑ 𝑞𝑖
𝐾
𝑘=1 . 𝑋𝑖𝑗𝑘

𝑛
𝑗=0 ≤  𝑇𝑐

𝑛
𝑖=0      ∀𝑖 = 1, 2 . . . 𝑛   ∀𝑗 = 1, 2 . . . 𝑛     (11) 

 

Where 𝑇𝑐 is the threshold or the maximum vehicle capacity permitted to transport waste. 
 

𝑑𝑖𝑠𝑡𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑗𝑖 , ∀𝑖 = 1, 2 . . . 𝑛 , ∀𝑗 = 1, 2 . . . 𝑛        (12) 

∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 ≤  𝑢𝑘             (13) 

𝑞𝑗𝑋𝑖𝑗𝑘 ≤ 𝑣𝑙𝑖𝑗 ≤ 𝑋𝑖𝑗𝑘(𝑄𝑘  − 𝑞𝑖): 𝑣𝑙𝑖𝑗 > 0, ∀𝑘 = {1,2, … 𝐾}, , ∀𝑖 = 1, 2 . . . 𝑛, ∀𝑗 =

1, 2 . . . 𝑛                (14) 

∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝐾
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1 = ∑ ∑ ∑ 𝑋𝑗𝑖𝑘

𝐾
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1   , ∀𝑘 = {1,2, … 𝐾}, 𝑖 ≠ 𝑗     (15) 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝐴𝐷𝑆 
, 𝐴𝐷𝑆  48 [

𝑘𝑚

ℎ
] , ADS =  Average Drive Speed      (16) 

𝑢𝑐 = (∑ ∑ ∑ 𝑑𝑖𝑗
𝐾
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 . 𝑋𝑖𝑗𝐾 )/2         (17) 

𝑋𝑖𝑗𝑘  ∈ {0,1}            (18) 

𝑢𝑘 ∈ {0,1}              (19) 

𝑌𝑗𝑘 ∈ {0,1}             (20) 

Constraint in Eq. 7 implies that the vehicle 𝑘𝑡ℎ  will begin its tour from the depot, while constraint 
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in Eq. 8 ensures the vehicle 𝑘𝑡ℎ starts picking up the waste from the depot without load. On the 
other hand, the constraint in Eq. 9 guarantees that when the vehicle visits the last waste container, 
it must reach the depot [31]. Meanwhile, the constraint in Eq. 10 indicates that a vehicle must fully 

empty all containers it visits, which is associated with the decision variable 𝑌𝑗𝑘, as expressed in Eq. 

3. Eq. 11 presents that the total amount of waste in a route cannot exceed its threshold 
of vehicle capacity, which is different from the strategy of using fixed vehicle capacity that was 
confirmed by Lee et al. [32] and Altabeeb et al. [33]. The constraint in Eq. 12 shows that the distance 
of two nodes travelling back and forth is the same.  
 
Furthermore, the constraint in Eq. 13 ensures that all vehicles are used if they are all maintained, 

while the constraint in Eq. 14 ensures the vehicle's load (𝑣𝑙𝑖𝑗) is non-negative. Meanwhile, the 

constraint in Eq. 15 ensures that the vehicle must exit the container (𝑖) after entering it. Constraint 
in Eq. 16 determines the actual time of the vehicle's movement between containers, including the 
total movement time, assuming a fixed vehicle's speed is 48 kilometers per hour (km/h). The 
constraint in Eq. 17 assumes that the cost of used vehicles is equivalent to 50% of the distance cost, 
while constraints in Equations (18- 20) define the domain of the decision variable. 
 
3.2 Hybridizing of ACO algorithm 
 
ACO is a nature-inspired metaheuristic algorithm [34]. ACO is a swarm algorithm derived from 
the social behavior of ant colonies that researchers utilize to solve optimization problems [35]. 
When ants obtain food, they return to their nest through the shortest route possible. During their 
travels, ants drop pheromones on the ground to indicate which pathways other colony members 
should follow. Although ACO is robust and can explore a solution, the convergence is still slow 
and down into the local optimum [36]. Therefore, hybridization is required to improve ACO 
performance. The whole waste collection system consists of four sections: 1) Construction of the 
initial solution model; 2) Elimination of a sub-tour problem; 3) Demolition and reconstruction of 
the solution model, and 4) Selection of optimal solution model, which in turn highlights the 
contribution explained in the form of steps which will be illustrated in the coming sections (See Fig. 
1). 
 

 
 

Figure 1. Flowchart of hybridized ACO algorithm 
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3.3 Construction of initial solution model 
 
The ACO algorithm consists of two fundamental phases: designing the ants' routes and updating 
pheromones. In a network of n containers, in addition to the location of the depot node, the vehicles 
simultaneously establish routes starting at initial nodes that are randomly selected. At each building 
stage, while k is at node (i), a probabilistic random proportional rule determines the next node. 
This stage demonstrates how it chooses the action to extend its route. For further insight, the ACO 
will be described in the following five steps: 
 
Step 1: Initialize the parameters 
 

The number of ants, the maximum number of iterations, parameter controls like  and , and the 
threshold of demands are set. For the sensitive response of the proposed algorithm in the 
exploitation stage, the evaporation value is set between [0,1]. 
 
Step 2: Tabu search algorithm 
 
In this step, the Tabu search representing local search algorithms may prevent a fall in the optimal 
local solution [37]. The Tabu list is used initially to cluster the routes and remove the candidate 
container from the list that has not been serviced. It is a mechanism applied to prevent a vehicle 
from servicing a container more than once, as outlined in Equation 10. Instead, the search will pick 
a container and terminate based on the waste collected without exceeding the threshold of the 
vehicle's capacity, as formulated in Eq. 11. This technique is repeated until all other containers in 
the route are serviced. 
 
Step 3: Exploration of initial solutions 
 
The initial solution to the vehicle routing problem is a collection of routes with a fixed number of 
containers. Each solution in the ACO algorithm is constructed using the Tabu search technique and 
the probability distribution. It is important to note that each route's containers are allocated based 
on the beginning container that was randomly selected [38], as expressed in Eq. 21. 
 

𝑃𝑖,𝑗
𝑘 = {

(𝐼𝑖𝑗)𝛼(ղ𝑖𝑗)𝛽

∑ (𝐼𝑖𝑗)𝛼(ղ𝑖𝑗)𝛽
𝑖∈𝑁𝑖

𝑘
,    if 𝑗 ∈ 𝑁𝑖

𝑘

0                    , otherwise  

(Initial exploration stage)                       (21) 

 
All operations between container (i) and container (j) in a single edge can be defined as follows. 
 

𝑃𝑖,𝑗
𝑘 : the probability of moving the vehicle in the remaining edges (𝑖, 𝑗).  

𝐼𝑖𝑗: the intensity of the pheromone. 

𝑁𝑖
𝑘: a set of containers that vehicle (k) has not visited yet. 

𝛼: the parameter to regulate the effects of 𝐼𝑖𝑗 . 
𝛽: the parameter to regulate the effects of ղ𝑖𝑗 . 
ղ𝑖𝑗: the inverse of the distance between containers (i) and (j), in other words, represents the shortest 
distance in edge (𝑖, 𝑗), as shown in Eq. 22 [39]. 
 

ղ𝑖𝑗 = 1 Distance  between container  (𝑖) and container (𝑗)⁄   (22) 
 
Step 4: Calculating the route distance and tightness of the vehicle 
 
Typically, the total distance for each route is calculated based on the distance matrix 𝑑𝑖𝑗 along with 
the initial pheromone matrix, representing crucial variables for determining the optimal route. 
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Here, the distance calculation between container (𝑖)   and container (𝑗)  in a 2D space matrix is 
implemented based on the Euclidean equation shown in Eq. 23. 

 
|𝑑𝑖𝑗| = √(𝑥𝑖−𝑥𝑗)2 + (𝑦𝑖−𝑦𝑗)2    (23) 

 
where, 

x: location of container source.  
y: location of container target. 

 
In this paper, the tightness factor (𝑡𝑘ℎ𝑜) is a vital variable that can be determined by dividing the 
waste volume in each container by the vehicle capacity. It is important to point out that the variable 
𝑡𝑘ℎ𝑜  is critical for determining the remaining space in the homogenous vehicle's capacity after 
merging the sub-tour with the least amount of waste, as expressed in Eq. 24. 
 

𝑇𝑜𝑡𝑎𝑙 𝑞𝑟 = (∑ 𝑞𝑗
𝑘)𝑛

𝑗=1 , 𝑗 ∈ {1, . . . 𝑛}, 𝑘 = {1, … . 𝐾}                     (24)     

 
 𝑇𝑜𝑡𝑎𝑙 𝑞𝑟: total amount of waste for each route.  
 
Let's substitute the value of 𝑇𝑜𝑡𝑎𝑙 𝑞𝑟 in Eq. 25. 
 

 𝑡𝑘ℎ𝑜 =  
1

𝑄𝑘ℎ𝑜
× 𝑇𝑜𝑡𝑎𝑙 𝑞𝑟  , 𝑗 ∈ {1, . . . 𝑛}, 𝑘 = {1, … . 𝐾}                  (25) 

 
Let, 

𝑡𝑘ℎ𝑜: homogenous tightness variable in the individual route. 
𝑄𝑘ℎ𝑜 : homogenous vehicles' capacity. 

 
Subsequently, the average tightness in each route can be calculated based on Eq. 26. 
 

𝑡𝐴𝑘ℎ𝑜  =  (∑ 𝑡𝑘ℎ𝑜) 𝑛
𝑗=1 / 𝑅), 𝑗 ∈ {1, . . . 𝑛}, 𝑘 = {1, … . 𝐾}                    (26) 

 

𝑡𝐴𝑘ℎ𝑜: the average tightness in the solution 
𝑅:  number of routes 
 
From the Algorithm 1 pseudo-code, a single for loop is used to determine the tightness in each 
container on each route. 
 
Algorithm 1: Pseudo-code of calculating tightness 

 
Step 5: Eliminating the sub-tour problem 
 
This research introduces a new technique to reduce the number of vehicles required, thereby 
reducing the cost of waste transportation by eliminating redundant sub-tours. It also studies the 
influence of the technique, as shown in the flowchart in Fig. 2.  

1  Input: edges, demands, Vehicle_Capacity 
2  Output: tightness. 
3  for j :=  i do             
4         Demands(demand[j])  
5  wasteCollectionsum (Demands) 
6  TwasteCollection/Vehicle_Capacity  
7   Print "Route Tightness," T  
8  End for 
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Figure 2. Flowchart of eliminating the sub-tour problem 
 
This technique is considered the primary key to the enhancement of heuristic algorithms. It 
comprises the following phases: Step 1 will read each route individually and determine if it contains 
sub-routes. In Step 2, the redundant routes from the current solution will be deleted and saved in 
a temporary registration. Step 3 calculates the amount of waste for each route. Step 4 determines 
the route with the least amount of waste. In Step 5, the value of collected waste will be removed 
from the list of original solutions. Subsequently, integrating the selected sub-tour with another 
route will reduce waste in Step 6. Eventually, the new route will be reconstructed. 
 
3.4 Demolition and reconstruction of the solution model 
 
Fig. 3 depicts the methodology of hybridizing ACO with a nested metaheuristic algorithm consisting 
of two phases. The first phase hybridizes ACO with SVNSCS procedures after reading the routes' 
dynamics and calculating each route's distance. Variable Neighborhood Search (VNS) is a well-
known metaheuristic technique to explore the solution space. Specifically, SVNSCS determines 
which neighborhood will be explored next and whether it will be considered a new solution. 
 
Step 6: Sequential variable neighborhood search change step 
 
This step represents the first phase for hybridizing ACO with SVNSCS procedures after reading the 
dynamic routes in several iterations and calculating the distance of each route. Feasible solutions 
have been evaluated in each iteration in the neighborhood change step as a condition cleared in Step 
6. The best solution is memorized in the register of the reconstruction solution. Implementing 
SVNSCS involves the sequential swapping technique on each route as a systematic framework. 
Other than that, the ratio of best swapping depends on the shortest route to waste CPs, provided 
that the total waste in a sequence of containers should be less than the vehicle's capacity. Note that 
the best swapping refers to the best solution. It is selected by evaluating each swapping as Step 8 in 
Fig. 3. 
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Figure 3. Methodology of a hybridized ACO with SVNSCS and SVND 
 
Step 7: Evaluation of objective function 
 
In this step, the distance between the location of a container and other containers is calculated using 
probability theory referred to in the initial solution generation model section in Step 4. The new 
objective function is calculated and compared simultaneously with the previous one. 
 
Step 8: Sequential variable neighborhood descent 
 
Considering the second stage in the demolition and reconstruction solution model, this step begins 
when the existing route has not been improved in the incumbent route. In this case, it will explore 
the distant neighborhoods of the incumbent solution and move from there to a new one if the 
improvement is made. This algorithm is called Sequential Variable Neighborhood Descent (SVND). 
The SVND method employs a list of ordered neighborhood structures and tests each structure by 

evaluating their sequence. The SVND principle works as follows: Let 𝑁 =  {𝑁1, . . . , 𝑁𝑙  𝑚𝑎𝑥} 
be a set of operators specifying the neighborhood structures and their testing order. Nevertheless, 
the fundamental sequential VND process investigates its neighborhood structures defined by the 

operators 𝑁𝑙, 1 ≤  𝑙 ≤  𝑙 𝑚𝑎𝑥 sequentially and iteratively. As soon as an improvement to the 
incumbent solution in a neighborhood structure happens, the basic sequential VND restarts its 
search in the new incumbent solution's first neighborhood structure (in the defined sequence).  
 
The search continues until the maximum iteration number, returning to the old route and saving 
the results in the reconstruction solution register. This process applies to any of the l max 
neighborhood structures, as the search operation initiates an evaluation between the various 
neighborhood structures that explore the best solutions. Since the set of neighborhood operators 
consists of four structures, the symbol list comprises Per2Opt, Las2Opt, One2Opt2, and Swap1T3, 
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where the first structure exchanges two containers 2Opt at the route list's peripheral. The second 
structure swaps the route list's final two containers. The third structure swaps index 2 with index 
1 on the route list, and the fourth is index 1 with index 2.  
 
All these structures are associated with the symbols mentioned respectively. Note that two 
motivations exist for utilizing a neighborhood structure above to address the following issues. The 
first issue is the weaknesses in the ACO algorithm when the ACO algorithm randomly chooses the 
first node from the list of nodes during the construction of the initial solution. The second issue is 
that the ACO chooses the optimal route from the last container back to the same depot. The 
solutions for each change in the neighborhood's structure have been reviewed, verifying their 
viability. Therefore, switching different neighborhood structures expands the variety of solutions, 
speeding up the algorithm's convergence. 
 
3.5 Selection of the best solution model 
 
Step 9: Ascending order and tournament selection methods 
 
Typically, ascending order is used to choose the optimal local solution for each iteration in terms 
of minimum value. The step passes the best local solution to the next generation using a tournament 
selection technique until it reaches a global solution [40]. 
 
Step 10: Update of pheromones 
 
Based on a study proposed by Guo et al. [38], generating the solutions for each iteration depends 
on the pheromones updated that, in turn, aims to increase the concentration on the regions 
containing high-quality solutions, as illustrated in Eq. 27.  
 

𝜏𝑖𝑗
𝑛𝑒𝑤 = 𝜌 × 𝜏𝑖𝑗

𝑜𝑙𝑑  + ∑ 𝛥𝜏𝑖𝑗
𝑘

𝑘∈𝐾            (27) 
where, 
  𝜏𝑖𝑗

𝑛𝑒𝑤: A new deposit of pheromones. 

  𝜏𝑖𝑗
𝑜𝑙𝑑: The initial pheromone. 

  𝜌: The evaporation value of pheromone 𝜌 𝜖 (0,1). 
  𝑘: The vehicle served the routes needed.  
  𝐾: The number of routes. 

  𝛥𝜏𝑖𝑗
(𝑘)

:  The increased pheromone in the edge (𝑖, 𝑗).  

 
Eventually, the improved algorithm can be implemented as a waste collection system by specifying 
the coordinates of collection points (containers) with their waste amounts on a Google map and 
then converting all points from geographically coordinated to metric coordinates while further 
replacing the new inputs with information of data algorithm sources. 
 
3.6 Dynamic capacitated vehicles routing model 
 
This model focuses on the methodology of detecting the route that has less tightness to assign the 
appropriate vehicle. Thus, the model is defined as appropriate vehicle capacity based on the routes 
tightness model (AVCRTM). Investigating the possibility of achieving this approach can be 
described as follows. 
 
3.6.1 Heterogeneous vehicles based on route tightness model 
 
Initially, the calculation entails dividing the total waste demands in a specific route over the vehicle 
capacity. In CVRP, weight refers to the waste demands inside a set of nodes distributed 
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geographically in a two-dimensional area. The HACO algorithm first calculated the tightness of 
each route and then optimized the routes with lower tightness.  It is necessary to calculate threshold 
levels of homogenous vehicle capacity (𝑇𝑘ℎ𝑜) which is by multiplying the Vehicle Capacity (𝑄𝑘ℎ𝑜) 
with the expected demands in a single route (𝑊) divided by 100, as shown in Eq. 28. 
 

𝑇𝑘ℎ𝑜 = 𝑄𝑘ℎ𝑜 ( 
𝑊

100
) , 𝑊 ∈ {80, 𝟖𝟓, 90, 95,100}                                 (28)  

Let, 
𝑇𝑘ℎ𝑜: threshold levels of homogenous vehicle capacity. 
𝑄𝑘ℎ𝑜: homogenous vehicle capacity. 
𝑊: expected waste demands in an individual route. 

 
Eq. 28 involves multiplying the vehicle capacity by the percentage of waste vehicles permitted to 
deliver. Researchers can measure the influence of load association with other factors such as fuel 
consumption, carbon dioxide (CO2) emission, and more with a novel method for determining the 
vehicle's capacity. Installation of a microcontroller with a weight sensor in each vehicle is needed 
to detect the amount of waste inside it. In this case, the vehicle will return to the depot after arriving 
at the vehicle capacity to the threshold level defined by the waste collection system. 
 

{e. g. , if 𝑄𝑘ℎ𝑜 = 220 units, and 𝑊 = 𝟖𝟓} 

 

𝑇𝑘ℎ𝑜 = 220 ( 
𝟖𝟓

100
) 

 𝑇𝑘ℎ𝑜 = 187 

 
The objective of designing the AVCRTM goes in two forms: 
 

1- Restricting the amount of waste allowed to be carried by homogeneous vehicles (Applied 
dynamic of CVRP). 

2- Detection of the route in which the total amount of waste for each route (𝑇𝑜𝑡𝑎𝑙 𝑞𝑟) less 
than or equal to threshold levels of Homogenous Vehicle Capacity (𝑇𝑘ℎ𝑜). Consequently, 
assigning appropriate vehicle capacity (heterogeneous vehicle). 

 
The methodology for the second objective of the solid waste collection management system is to 
maximize the amount of waste collected by vehicles. Firstly, assume a proposed algorithm 
constructed 7 routes; the sampling methodology of design AVCRTM consists of homogenous 
vehicle capacity (𝑄𝑘ℎ𝑜), expected waste demands in an individual route (𝑊), reading the routes in 
each solution, calculate the total amount of waste for each route (𝑇𝑜𝑡𝑎𝑙 𝑞𝑟), threshold levels of 
homogenous vehicle capacity (𝑇𝑘ℎ𝑜) and current tightness value in the individual route (𝑡𝑘ℎ𝑜) as 
illustrated in Fig. 4. 
 
The bold font in the 3rd iteration indicates the route with a lower tightness value, so the HACO 
filtered the 3rd route according to the specified condition. Thus, the appropriate vehicle capacity 
can be calculated using the following mathematical procedures. The difference between the 

maximum value of tightness (𝑡𝑜 = 1.0), and the homogenous tightness (𝑡𝑘ℎ𝑜) as expressed in Eq. 
29. 

∆𝑡𝑔= 𝑡𝑜 − 𝑡𝑘ℎ𝑜                                                       (29) 
 

∆𝑡𝑔= 1 − 𝑡𝑘ℎ𝑜. According to Figure 4, substitute o.4 in 𝑡𝑘ℎ𝑜 with reference to Eq. 29, ∆𝑡𝑔= 0.6. Let, 
∆𝑡𝑔: tightness generated. For determining the heterogeneous vehicle capacity (𝑄𝑘ℎ𝑒), follow Eq. 30. 
 

𝑄𝑘ℎ𝑒 = 𝑄𝑘ℎ𝑜 × ∆𝑡𝑔                                                          (30) 

 

 𝑄𝑘ℎ𝑒 = 220 × 0.6 = 132 
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Figure 4. Framework for detecting a route based on lower tightness value 

 
Finding the heterogeneous vehicle capacity component concerning the threshold levels of vehicle 
capacity (𝑇𝑘ℎ𝑜𝑒) based on Eq. 31. 

  𝑇𝑘ℎ𝑜𝑒 =
𝑄𝑘ℎ𝑒×𝑊 

100
                                                       (31) 

 

𝑇𝑘ℎ𝑒: threshold levels of heterogeneous vehicle capacity. 
 

  𝑇𝑘ℎ𝑜𝑒 =
132×85 

100
 = 112.2 

 
For testing the acceptability of the heterogenous tightness (𝑡𝑘ℎ𝑒), substitute the value of 𝑄𝑘ℎ𝑒 instead 
of the value of 𝑄𝑘ℎ𝑜 that was mentioned in Eq.25. The re-formulation is shown in Eq. 32. 
 

 𝑡𝑘ℎ𝑒 =  
1

𝑄𝑘ℎ𝑒
× 𝑇𝑜𝑡𝑎𝑙 𝑞𝑟  ,   𝑗 ∈ {1, . . . 𝑛}, 𝑘 = {1, … . 𝐾}                    (32) 

 
𝑡𝑘ℎ𝑒: heterogenous tightness variable in the individual route. 

𝑡𝑘ℎ𝑒 =  
1

132
× 90 = 0.68  

 
Therefore, the appropriate heterogeneous vehicle capacity is 132 units because it is located within 
an acceptable range (0.6-1.0). 
 
4. Results and discussion 
 
The proposed algorithms are evaluated utilizing four benchmark datasets: Dataset A, B, E, and P. 
Dataset A, B and P were originally from Augerat et al. [41], whereas set E was established by 
Christofides and Eilon [42]. The instances in this dataset represent different scenarios of the CVRP, 
where vehicles must deliver goods to various locations while respecting capacity constraints. Each 
instance is denoted by a combination of parameters, such as the number of nodes (customers), 
vehicles, and vehicle capacities. The same dataset was also used by Matthopoulos and Sofianopoulou 
to solve the CVRP problem using the firefly algorithm [43]. 
 
In this study, the algorithms are executed ten times in each instance, where each run is terminated 
when the maximum number of iterations is reached. Moreover, the following parameters of the 
proposed method are determined based on trial and error: Maximum number of iterations, number 

of ants, , , ρ and τ are 250, 50, 2, 4, 0.7, and 80, respectively. All strategies were coded in 
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Python and implemented on a PC with 4 GB of RAM and an Intel core i5 processor running at 2.3 
GHz. 
 
The format X-nXX-kX is the instance's name, where the variable X is a benchmark name. Besides, 
nXX indicates the CPs to be serviced, while kX refers to the number of vehicles. The proposed 
algorithm has been evaluated by measuring the accuracy and comparing the best distance value in 
ACO and HACO with the BKS of the dataset class, as shown in Equations 33 and 34 [44]. 
 

Δ𝑑𝐴𝐶𝑂
(%)  =

(𝑑𝐴𝐶𝑂−𝑑𝐵𝐾𝑆)

𝑑𝐵𝐾𝑆
 × 100    (33) 

Δ𝑑𝐻𝐴𝐶𝑂
(%) =

(𝑑𝐻𝐴𝐶𝑂−𝑑𝐵𝐾𝑆)

𝑑𝐵𝐾𝑆
 × 100     (34) 

 
In addition, the improvement value between the best distance of ACO and the best distance of 
HACO can be calculated by Eq. 35. 
 

𝛥 = 𝑑𝐴𝐶𝑂 − 𝑑𝐻𝐴𝐶𝑂                                                (35) 
 
where, 

Δ: the improvement value. 

𝑑𝐴𝐶𝑂: the best distance by basic ACO. 
𝑑𝐻𝐴𝐶𝑂: the best distance by hybridizing ACO. 

 
In addition, the quality of the proposed algorithm was determined by calculating the sum of the best 
distances (Avg.) optimized and divided by the number of instances in each benchmark class, as 
shown in Eq. 36.  
 

Avg. (%)  = (
1

𝑛
∑ 𝑑𝐻𝐴𝐶𝑂

𝑖𝑛
𝑖=1  )      (36) 

where, 

𝑛: the number of instances. 

𝑖:  the index of summation best distances.  

𝑑𝐻𝐴𝐶𝑂
𝑖 : the distance value for a given index. 

 
4.1 Evaluation of HACO with standard ACO 
 
In this subsection, a comparison is made between standard ACO and HACO in different datasets 
for the capacitated vehicle routing problem gathered from various sources. The CVRP dataset 
consists of four different classes. Each has different characteristics regarding the number of nodes, 
vehicle capacity, objective function, weight of each node, and geographical distribution. The input 
parameters are the instance column, the problem dimension column (D), the number of vehicles 

column (K), and the distance of the BKS column (dBKS). The objective function is to reduce the 
route's distance. 
 
Table 2 displayed the benchmark class A, showing that the HACO outperforms the basic ACO 
algorithm in 8 instances, as the numbers highlighted in the shaded column, except for A-n32-k5, 
which was extremely near the optimal solution of the basic ACO algorithm. The proposed 
algorithm obtained an accuracy of 100% for the best distance. It is important to note that the 
average values of the suggested method are stable since they are very near to the average value of 
the best solution. Concerning the tightness value, we observed that all values are close to one, 
indicating that the proposed method efficiently uses the vehicle's carrying capacity, as shown in the 
average column. 
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Table 2. Comparison of HACO with ACO for Benchmark A 
 

 
Table 3 demonstrates the benchmark class B. It also reveals that the HACO algorithm outperforms 
the basic ACO algorithm in 11 of 12 instances, most of which are close to the BKS. Except for 
instances B-n31-k5 and B-n44-k7, they obtain the BKS and surpass it by reducing the number of 
routes by one, as indicated by the asterisk symbol. It results in an achieved rate of 91.6% for the 
entire dataset. Each instance's value was extremely near to one regarding the average tightness. 
 

Table 3. Comparison of HACO with ACO for Benchmark B 
 

 

 
 
 
 
 

 ACO HACO  

Instances D K 𝐝𝐁𝐊𝐒 𝐝𝐀𝐂𝐎 Avg. 𝚫𝐝𝐀𝐂𝐎
 𝐝𝐇𝐀𝐂𝐎 Avg. 𝚫𝐝𝐇𝐀𝐂𝐎

 Δ 𝐀𝐯𝐠 𝐓
𝐤 

A-n32-k5 32 5 784 846 846.3 7.9 788 788.4 0.51 58 1 

A-n33-k5 33 5 661 681 681.2 3.0 678 681.9 2.57 3 0.8 

A-n33-k6 33 6 742 761 762.7 2.6 756 756.9 1.89 5.2 0.9 

A-n39-k5 39 5 822 882 884.2 7.3 869 884.8 5.72 13 0.95 

A-n44-k6 44 6 937 975 984.1 4.1 971 972.5 3.63 4 0.95 

A-n46-k7 46 7 914 1014 1025 10.9 980 1045.1 7.22 34 0.86 

A-n54-k7 54 7 1167 1256 1256.4 7.6 1226 1229.8 5.06 30 0.95 

A-n63-k9 63 9 1616 1756 1777.1 8.7 1707 1715.1 5.63 49 0.97 

A-n69-k9 69 9 1159 1264 1279.5 9.1 1244 1245.1 7.33 20 0.93 

Avg.  100%  

D: Dimension of a problem; K: Number of vehicles; BKS: best-known solution; Δ: Improvement value; 

Avg T
k : The average of the tightness; HACO-hybridization of ant colony optimization;  

 ACO HACO  

Instances D K 𝐝𝐁𝐊𝐒 𝐝𝐀𝐂𝐎 Avg. 𝚫𝐝𝐀𝐂𝐎
 𝐝𝐇𝐀𝐂𝐎 Avg. 𝚫𝐝𝐇𝐀𝐂𝐎

 Δ 𝐀𝐯𝐠 𝐓
𝐤 

B-n31-k5 31 5 672 679 680.4 1.0 595* 596.3 -11.4 84 1.0 

B-n34-k5 34 5 788 805 812.1 2.2 798 798.8 1.2 7 0.91 

B-n38-k6 38 6 805 843 836.8 4.7 826 826.6 2.6 17 0.85 

B-n45-k5 45 5 751 788 790.1 4.9 779 779.6 3.7 9 0.97 

B-n43-k6 43 6 742 755 761 1.8 754 754.5 1.6 1 0.86 

B-n44-k7 44 7 909 967 979.5 6.4 853* 854.2 -6.1 114 1.0 

B-n51-k7 51 7 1032 1085 1089.1 5.1 1044 1044.3 1.1 41 0.97 

B-n50-k7 50 7 741 798 805.0 7.7 789 790.3 6.4 9 0.87 

B-n52-k7 52 7 747 784 787.3 4.3 784 786 4.9 0 0.86 

B-n56-k7 56 7 707 768 775.2 8.6 759 763.1 7.3 9 0.88 

B-n66-k9 66 9 1316 1422 1431.3 8.1 1371 1376.3 4.1 51 0.95 

B-n78-k10 78 10 1221 1331.5 1343.7 9 1294 1296.7 5.9 37.5 0.93 

Avg.  91.6%  

* Reduce the number of routes by one route 
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Table 4. Comparison of HACO with ACO for Benchmark E 
 

 
Table 4 presents the class of benchmark E. Although the HACO is superior to the ACO in all 
instances with a 100% improvement rate, the instances E-n51-k5 and E-n76-k14 have a slight 
weakness in increasing the number of routes by one route in comparison to the BKS, where the 
average tightness is excellent in the proposed algorithm. The proposed algorithm struggled to meet 
the BKS in all instances except E-n22-k4, resulting in a small size problem. Consequently, the 
improvement rate of the HACO algorithm in comparison to the ACO was relatively high in all 
instances. The average of the best solution in the proposed algorithm demonstrates the algorithm's 
stability. 
 

Table 5 tabulates the results from benchmark P. The HACO significantly outperformed ACO by 
87%, except in one instance, P-n45-k5, which obtained the same best distance as ACO. In another 
instance, P-n70-k10 suffered from an increased number of routes compared to the BKS. Therefore, 
the tightness value indicates good exploitation in the vehicle capacity. 
 

Table 5. Comparison of HACO with ACO for Benchmark P 
 

 

4.2 Analysis of multiple improvements of ACO 
 

This section compares basic ACO, ACO-SVNSCS, and HACO based on their optimal distance and 
run time. The HACO algorithm combines the hybridized ACO with the SVNSCS and VNSD 
algorithms to assess the effects of modification strategies. We also measured the individual 

 ACO HACO  

Instances D K 𝐝𝐁𝐊𝐒 𝐝𝐀𝐂𝐎 Avg. 𝚫𝐝𝐀𝐂𝐎
 𝐝𝐇𝐀𝐂𝐎 Avg. 𝚫𝐝𝐇𝐀𝐂𝐎

 Δ 𝐀𝐯𝐠 𝐓
𝐤 

E-n22-k4 22 4 375 401 401.5 6.9 376 376.5 0.27 25 0.93 

E-n33-k4 33 4 835 874 881 4.7 859 859.6 2.87 15 0.91 

E-n51-k5 51 5 521 611 624.3 17.3 581+ 591.2 11.52 30 0.8 

E-n76-k7 76 7 682 797 819 16.9 775 776.0 13.64 22 0.88 

E-n76-k8 76 8 735 855 863.1 16.3 823 826.3 11.97 32 0.94 

E-n76-k10 76 10 830 931 958.2 12.2 913 918. 10.00 18 0.97 

E-n76-k14 76 14 1021 1119 1133.4 9.6 1098+ 1103.1 7.54 21 0.9 

E-n101-k8 101 8 817 1000 1017.6 22.4 964 971.3 17.99 36 0.91 

Avg.  100%  

+ Increase the number of routes by 1 

 ACO HACO  

Instances D K 𝐝𝐁𝐊𝐒 𝐝𝐀𝐂𝐎 Avg. 𝚫𝐝𝐀𝐂𝐎
 𝐝𝐇𝐀𝐂𝐎 Avg. 𝚫𝐝𝐇𝐀𝐂𝐎

 Δ 𝐀𝐯𝐠 𝐓
𝐤 

P-n60-k10 60 10 744 830.2 838.4 11.59 795 801.3 6.85 35.2 0.94 

P-n60-k15 60 15 968 1042 1056.1 7.64 1009 1013 4.24 33 0.94 

P-n45-k5 45 5 510 577 587.3 13.14 577 579.3 10.20 15 0.92 

P-n65-k10 65 10 792 889 908.9 12.25 859 861.9 8.46 30 0.93 

P-n76-k4 76 4 593 690 701.7 16.36 665 666.7 12.14 25 0.97 

P-n70-k10 70 10 827 931.6 949.4 12.65 900+ 905.9 8.83 31.6 0.88 

P-n76-k5 76 5 627 733 754.9 16.91 709 712.9 13.08 24 0.97 

P-n101-k4 101 4 681 821 840.1 20.56 804 815.8 18.06 17 0.91 

Avg.  87%  

+ Increase the number of routes by 1  
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percentage impact of contributing ACO algorithms. Based on the simulation environment, all 
algorithms are conducted individually with a specified number of iterations and the number of ants: 
100 iterations and 25 ants, respectively. However, 8 instances were chosen to diversify the test and 
ensure the results' accuracy. The instance was picked based on several criteria from various 
benchmark classes, including vehicle capacity, container count, and route count. 
 

The results of HACO were superior to ACO in 7 out of 8 instances, and they achieved a score of 
87.5%. Although the run time was close to the run time in the rest of the ACO, the improvement 
rate was excellent. However, in only one case, in the instance P-n19-k2, there was no difference 
compared to other algorithms. Therefore, it was concluded that the closer the distribution of 
container locations is to each other, the better the impact of the optimization techniques. 
Accordingly, computational results prove the effectiveness and efficacy of the strategy proposed, as 
shown in Table 6. 
 

Table 6. Results of comparison impact for different ACO 
 

 
The ACO-SVNSCS outperforms the ACO in 6 out of 8 instances at a rate of 75%. In terms of best 
distance, the results were quite similar. Despite the adjustment of SVNSCS, the run time values 
were comparable to those of ACO, although it outperformed the run time in the instance of E-n22-
k4, distinguished by its vast capacity. HACO was superior to ACO in 7 out of 8 instances and earned 
an overall score of 87.5%. The runtime was comparable to the rest of the ACO, and the rate of 
improvement was remarkably high. 
 

4.3 Analysis of eliminating sub-tour problem 
 

This section will clarify the impact of eliminating the sub-route problem on waste transportation 
costs by comparing three examples. These examples were chosen to diversify the comparison onto 
a specific geographical distribution of containers. The benefits of this strategy are summarized as 
follows: 
 

1. It is considered the primary key to improving the algorithm of ant colonies with local search 
algorithms. 

2. Reducing transportation costs by merging the sub-route with the tracks that have the least 
waste is directly proportional to reducing the number of vehicles used. 

3. Reducing the distance travelled to serve the CPs. 
 

Table 7 presents the computation results, showing the difference between the route structure with 
and without the sub-tour. 
 

 ACO ACO-SVNSCS HACO 

Instances Q 𝐝𝐀𝐂𝐎 Avg. 
Time 
(sec) 

𝐝 𝐀𝐂𝐎−
𝐒𝐕𝐍𝐒𝐂𝐒

 Avg. 
Time 
(sec) 𝐝𝐇𝐀𝐂𝐎 Avg. 

Time 
(sec) 

A-n33-k5 100 703 705.6 51 701 717 57 692 706.28 61.8 
 

A-n60-k9 100 1546 1575.4 115.2 1523 1550 119.4 1516 1516 120 

B-n31-k5 100 685 687.5 47.4 610 601.6 52.2 595 598.91 52.8 

B-n50-k7 100 807 812.4 85.8 806 812 94.2 805 810.57 94.2 

E-n22-k4 6000 433 437.5 33 426 438.8 32.4 391 413.04 34.8 

P-n19-k2 160 218 218.5 27 221 221.8 29.4 218 218.5 28.8 

P-n70-k10 135 1017 1022.7 141.6 984 984.34 146.4 965 989.3 148.2 

P-n101-k4 400 871 875.04 223.9 879 891.4 232.02 863 869.22 300 

Avg.  75%  87.5%  

ACO: Ant Colony Optimization; SVNSCS: Sequential Variable Neighborhood Search Change Step; HACO: 
Hybrid ACO with (SVNSCS+SVND); Q: Vehicle capacity 
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Table 7. Index of different instances 
 

Problem Instance Problem Instance Problem Instance 

P1 A-n33-k5 P2 E-n76-k10 P3 B-n44-k7 

 

Different instances with and without the sub-tour have been compared. The same algorithm's 
parameters are used, such as assigning 5 as some iterations and some ants in a single run. According 
to that, the performance of the proposed algorithm gives optimal routes in all instances selected, 
compared to the previous ACO, as shown in Table 8. This outcome reduced the distance of 12.19, 
160, and 28.16 units, respectively, based on Equation 37. Figure 5 demonstrates the number of 
routes reduced in different instances: A-n33-k5, B-n44-k7, and E-n76-k10. 
 

∆𝑆= 𝐷𝑠 −  𝐷𝑤𝑠     (37) 
 

where, 
  ∆𝑆: improved distance after eliminating the sub-tour. 
  𝐷𝑠: distance with sub-tour. 
 𝐷𝑤𝑠: distance without sub-tour. 
 

 
 

Figure 5. The impacts of eliminating sub-tour 
 

Table 8. Effects of eliminating the sub-tour problem in different instances 
 

Prob. Routes with sub-tour 𝑵𝑹 𝑫𝒔 
Routes without sub-

tour �̅�𝑹 𝑫𝒘𝒔 ∆𝑺 

P1 [[19, 29, 24, 12, 7, 25], [32, 22, 
15, 20, 2, 30, 17, 4], [33, 21, 5, 
13, 11, 31, 26], [9, 14, 27, 8, 6, 
28], [10, 18, 16, 23], [3]] 

6 816.96 [[10, 18, 16, 23], [9, 14, 27, 8, 
6, 28], [33, 21, 5, 13, 11, 31, 
26], [32, 22, 15, 20, 2, 30, 17, 
4], [19, 29, 24, 12, 7, 25, 3]] 

5 804. 77 12.19 

P2  [[16, 34, 4, 44, 32], [6, 18, 41, 
2, 13, 29, 26, 21], [27, 15, 37, 
3, 40, 25, 36], [38, 42, 35, 14, 
22, 7, 33, 20], [5, 10, 12, 11], 
[28, 19, 17, 30, 8, 9, 31], [43, 
23, 39], [24]] 

8 1307 [[43, 23, 39], [27, 15, 37, 3, 
40, 25, 36], [16, 34, 4, 44, 
32], [38, 42, 35, 14, 22, 7, 33, 
20], [6, 18, 41, 2, 13, 29, 26, 
21], [28, 19, 17, 30, 8, 9, 31], 
[5, 10, 12, 11, 24]] 

7 1147 160 

P3 [[76, 69, 7, 52, 18, 41, 13], [72, 
61, 71, 21, 38, 6, 30, 46, 28], 
[62, 29, 63, 74, 34, 64, 17, 4], 
[36, 8, 9, 47, 35, 53, 14, 55], 
[51, 19, 26, 56, 10, 40, 73, 59], 
[33, 45, 50, 25, 24, 57, 42, 43], 
[48, 22, 75, 31, 3, 5], [20, 15, 
54, 12, 66, 39], [49, 37, 70, 16, 
58, 68, 27, 11], [23, 2, 44, 65, 
32, 67], [60]] 

11 1146.58 [[76, 69, 7, 52, 18, 41, 13], 
[36, 8, 9, 47, 35, 53, 14, 55], 
[72, 61, 71, 21, 38, 6, 30, 46, 
28], [33, 45, 50, 25, 24, 57, 
42, 43], [48, 22, 75, 31, 3, 5], 
[62, 29, 63, 74, 34, 64, 17, 4], 
[49, 37, 70, 16, 58, 68, 27, 
11], [20, 15, 54, 12, 66, 39], 
[23, 2, 44, 65, 32, 67], [51, 
19, 26, 56, 10, 40, 73, 59, 60]] 

10 1118.42 28.16 

𝑁𝑅: Number of routes before improvement; �̅�𝑅: Number of routes after improvement;  
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4.4 Sensitivity analysis of vehicle capacity 
 
Fig. 6 displays the outcomes of the sensitivity analysis. It demonstrates how restricting the search 
space in terms of vehicle capacity dynamics impacts the optimal route. The sensitivity of HACO is 
performed to investigate the effects of different percentage values (80-100%), representing the 
amount of waste allowed to be collected by vehicle capacity in each route. This method enables 
HACO to limit a precise amount of waste, controlling the vehicle's capacity. The simulation results 
indicate that a 100% level of waste in the vehicle capacity provides the best distance improvement, 
based on the first 40 iterations, compared to another percentage of capacity levels. Furthermore, it 
converges quickly in the 370 iterations because it has a more extensive search area. In contrast, 
increasing the percentage values for HACO takes longer, as shown in Table 9. 
 

 
 

Figure 6. The performance of HACO in the dynamic of vehicle capacity 
 

Table 9. HACO's Vehicle Capacity Analysis 
 

Level of Q (%) Best distance Avg. Run time (sec) 

80 688 691.66 91.7 
85 687 692.66 94.47 
90 684 686.57 101.56 
95 681 691.73 101.71 
100 678 685.64 142.23 

 
Concerning the run time differences, we notice an inverse relationship between the improvement 
rate and the level of waste allowed to be carried in vehicles. As the search area increases, the 
improvement rate increases. When a level of Q = 100 is chosen, it means an increase in time 
complexity and vice versa. When a level of Q = 80 is chosen, only the path matching the specified 
threshold is optimized. 
 
4.5 Convergence behavior analysis 
 
The convergence behavior of ACO, ACO-SVNSCS and HACO algorithms was also analyzed. The 
algorithm parameters are 500, 25, and 100 for the number of iterations, the number of ants, and 
the percentage of waste allowed in the vehicle's capacity. To ensure the diversity of the solution, 
we examine two examples: a) A-n33-k5 and b) P-n101-k4. In instance (a), the initial improvement 
ACO-SVNSCS converged locally quicker than HACO in the first 50 iterations. This indicates that 
ACO-SVNSCS progressed rapidly from the existing best solution to the best new solution after 150 
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iterations. Hence, HACO has more potential to escape from local optima than basic ACO and 
ACO-SVNSCS. However, the latter converges faster than basic ACO, as seen in Figure 7. In 
instance (b), it is apparent that HACO has a greater chance of converging within the first 50 
iterations than ACO-SVNSCS and basic ACO. In 220 iterations, the second convergence 
demonstrates that HACO outperforms the other methods, and the improvement of ACO-SVNSCS 
still outperforms the convergence of basic ACO. 
 

 
 

Figure 7. Convergence behavior for instances A-n33-k5 (left) and P-n101-k4 (right) 
 
5. Conclusion  
 
This paper presented a comparative study of the hybrid ACO with nested VNS algorithms, including 
SVNSCS and SVND, for solving CVRP and DCVRP for waste collection systems. A systematic 
framework model was designed by hybridizing ACO to increase its searchability in the exploration 
and exploitation stages. Variants of average vehicle speed and threshold of vehicle capacity were 
adopted to observe the arrival time and analyze the effect of dynamic vehicle capacity on the VRP. 
Simulation experiments demonstrated that the proposed method performed significantly better 
than standard ACO. Four criteria have been used to improve waste collection distance using ACO 
algorithms. From the results, ACO-SVNSCS outperforms ACO by 75%, and HACO outperforms 
other ACO algorithms by 85% in minimizing the optimal distance. Furthermore, a new technique 
was designed to eliminate the sub-tour problem in the ACO algorithms. The computation results 
demonstrated its superiority in all tests. Moreover, the sensitivity of HACO concerning vehicle 
capacity was analyzed at five percentage levels. The experimental results concluded that the optimal 
distance provided at the rate of 100% of the waste amount allowed in the vehicle's capacity. In 
contrast, it causes an increase in the algorithm's runtime. Exploring the convergence behavior of 
ACO, ACO-SVNSCS, and HACO revealed that HACO yielded the best results compared to other 
ACO algorithms. This study only limits the performance of ACO algorithms for solving the 
dynamic capacity of vehicle routing problems in waste collection systems. Future research may 
focus on increasing the exploration stage to accelerate the convergence of HACO in large-scale 
problems, estimating the variant of a daily traffic congestion time, and evaluating the proposed 
algorithm in the context of other different metaheuristic algorithms for solving the same problems. 
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