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Abstract: FLAP (5-Lipoxygenase Activating Protein) inhibitors, offering targeted intervention in 
leukotriene biosynthesis and holding therapeutic promise for inflammatory diseases like asthma, are 
hindered by current inhibitors' off-target effects, limited efficacy, safety concerns, potential drug 
interactions, and accessibility issues. Given these challenges, computational methods, particularly 
Quantitative Structure Activity Relationships (QSAR) modeling, are vital for developing novel 
FLAP inhibitors. This study specifically investigates the QSAR of FLAP inhibitors using Kernel 
Partial Least Squares (KPLS) modeling. Leveraging a dataset of FLAP inhibitors, we employ KPLS 
within the Schrödinger Canvas environment to correlate molecular descriptors with biological 
activity. Out of the eight models developed, the "atom pairs" fingerprint yielded a statistically 
significant 2D QSAR model with outstanding regression coefficient values (R2=0.9624). The model 
demonstrated high predictive ability for external test set data (R2pred = 0.7105), underscoring its 
robustness and reliability in accurately predicting biological activity based on molecular structure. 
Additionally, we tried to visualize the relative contributions of individual atoms within FLAP 
inhibitors, providing insights into their favorable and unfavorable characteristics. Through the 
analysis of atomic contributions, we identify key structural motifs crucial for predicting FLAP 
inhibitor activity. Our findings not only advance our understanding of FLAP inhibitor SAR but also 
demonstrate the utility of KPLS modeling and atomic contribution analysis in drug discovery 
efforts. Furthermore, this study contributes to the development of anti-inflammatory therapeutics 
by elucidating the structural determinants of FLAP inhibitor activity, with potential applications in 
the treatment of inflammatory disorders. 
 
Keywords: 5-Lipoxygenase Activating Protein; Inflammatory disorders; Kernel partial least 
squares regression; Visualization of atomic 
 

1. Introduction 
 
FLAP inhibitors represent a crucial class of pharmaceutical compounds extensively studied for their 
therapeutic potential in inflammatory and respiratory diseases [1]. Particularly, their role in 
modulating the biosynthesis of leukotrienes, potent mediators of inflammation, underscores their 
significance in drug development for conditions such as asthma, chronic obstructive pulmonary 
disease (COPD), and allergic rhinitis [2]. In recent years, the utilization of advanced computational 
techniques in pharmaceutical research has provided unprecedented insights into the QSAR of FLAP 
inhibitors [3]. Among these techniques, kernel-based partial least squares regression (KPLSR) 
models have emerged as powerful tools for analysing complex molecular datasets, facilitating the 
design and optimization of novel drug candidates. 
 
QSAR models, which provide information on various aspects of the chemical structure that 
contribute favourably and adversely to the model for predicting biological activity, are important 
for the rational design of drugs through chemical modifications of existing lead [4], [5]. This goal 
has been achieved by a variety of approaches, including CoMFA, CoMSIA, 4D QSAR, Phase QSAR, 
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Hologram QSAR, and StarDrop, although only the latter two are independent of 3D structure [6]. 
But we need to take care of too many adjustable parameters such as 3D structural alignment, 
orientation, lattice size, probe atom, cut-off limit, variable selection procedure, etc. and these are 
the big challenges we faced there. Instead of 3D structural parameters, the implementation of 2D 
fingerprints is the perfect way to avoid the problem due to the orientation and alignment of 3D 
conformers. Fingerprints are a set of descriptors that can be easily assembled into a "string" that 
characterizes a compound. These descriptors can be either binary, numeric or categorical. 2D 
fingerprints descriptors are the most reliable and common technique used in the discovery of new 
drugs and are commonly used for the retrieval of hit compounds compared to 3D descriptors [7], 
[8], [9], [10]. Analysis of similarity based on fingerprints offers a wide range of possibilities in terms 
of fragment-based approaches, atom/bond typing schemes, rules for bit scaling, and similarity 
indices. Fingerprints are therefore very useful in the study of the characteristics responsible for the 
biological activity of molecules. 
 
Eight different types of binary fingerprinting methods have been used in this study to predict 
structural criteria for selective inhibition of FLAP on three molecular datasets. Here, the 
appropriateness of the specific fingerprint for the selected molecules is determined by kernel based 
partial least squire value. To obtain highly predictive and interpretable 2D QSAR models, we have 
used the KPLS combined with the 2D fingerprint definitions implemented in the Schrodinger 
software suit's Canvas module. It is well known that the partial least square method has been popular 
modelling and regression technique in chemometrics. KPLS is an extension of partial least-square 
regression that adds some non-linearity through a "kernel" in the scalar products of the X variables 
used in regression [11]. It has a more predictive ability. 
 
This paper aims to delve into the application of KPLSR models in the study of FLAP inhibitors, 
elucidating their efficacy in predicting the biological activity of novel compounds based on their 
chemical structure. By integrating molecular descriptors and biological data, KPLSR offers a holistic 
approach to QSAR analysis, enabling researchers to discern key molecular features contributing to 
the pharmacological profile of FLAP inhibitors. 
 
2. Material and Methods 
 
2.1 Data set selection  
 
A set of 173 5-(5-cyclobutylpyridin-2-yl) pyrimidin-2-amine derivative were assessed for the ability 
to bind to FLAP in a binding assay that measures compound-specific displacement of an iodinated 
(125I) FLAP inhibitor via a scintillation proximity assay format and the result were reported in 
PubChem [12] with a Assay ID (AID) 1257599 [13]. Compounds are optimized and energy 
minimized using SE/PM6 method implemented in gaussian 09 software [14]. Then all compounds 
are converted to Mol2 format using open babel utility. The dataset was then divided into a training 
set comprising 139 compounds and a test set consisting of 34 compounds. The structural motif of 
the compound dataset is given in Fig. 1. 

 
 

Figure 1. The structural motif of 5-(5-cyclobutylpyridin-2-yl) pyrimidin-2-amine derivatives 
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2.2 Binary fingerprints 
 
The 2D fingerprints including seven hashed type fingerprints such as Linear, Dendritic, Radial, 
MOLPRINT2D, Atom pairs and Atom triplets, Topological as well as one structural key type of 
fingerprint ‘MACCS’ are calculated for the dataset [8], [15]. In total, eight fingerprints are used to 
generate eight QSAR models. Linear fingerprints capture substructures formed by linear paths of 
up to seven bonds. Each path is hashed to produce an integer bit address. For rings, the path length 
extends to fourteen bonds. Radial fingerprints, derived from the Morgan algorithm, assign 
identifiers to each atom based on its neighbors, resulting in a 2048-bit vector after removing 
duplicates. Dendritic Fingerprint incorporates branched features along with linear ones, with a 
maximum of five bonds per path. 
 
MOLPRINT2D encrypts atom environments into varying-sized strings, finding applications in 
molecular similarity studies. Atom pairs represent pairs of atoms and their associated distance, 
useful for pharmacophore analysis and QSAR modeling. Atom triplets fingerprints encode 
structural information based on the arrangement of groups of three atoms within a molecule, 
valuable for QSAR modeling. Topological fingerprints encode molecular structure information 
based on the topology of the molecule, commonly used for similarity searching and machine 
learning-based modeling. MACCS fingerprints encode structural information based on predefined 
substructures, widely used in drug discovery for virtual screening and QSAR modeling [16]. These 
fingerprinting methods are essential for molecular representation and analysis in drug discovery, 
cheminformatics, and molecular modeling [17]. 
 
2.3 Kernel Partial Least Squares (KPLS) method 
 
The study utilized the KPLS method to investigate the correlation between molecular structural 
properties and biological activity. KPLS amalgamates the robustness of Partial Least Squares (PLS) 
regression with the adaptability of kernel methods, enabling it to effectively capture nonlinear 
relationships within the data [18]. Renowned for its versatility, KPLS finds extensive application 
across disciplines such as chemometrics, bioinformatics, and computational biology. Its utility spans 
various tasks including regression modeling, classification, and dimensionality reduction. 
Leveraging a KPLS model within the Schrödinger Canvas environment [19], our study was able to 
conduct comprehensive analyses with enhanced computational efficiency and streamlined workflow 
integration. This study has developed eight KPLS QSAR models, each based on a distinct 
fingerprint. 
 
2.4 Validation of KPLSR Model 
 
The predictive power of the generated models was evaluated by using the R-squared (R2) value, 
Root Mean Square Error (RMSE) and predictive correlation coefficient (R2pred) of an external test 
set. The R2 and R2pred were determined according to the following equations [20].  
 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
       (1) 

 

𝑅𝑃𝑟𝑒𝑑
2 =  

𝑆𝐷−𝑃𝑅𝐸𝑆𝑆

𝑆𝐷
                                                                  (2) 

 
where RSS is the sum of squares of residual and TSS is the total sum of squares. Standard Deviation 
(SD) is defined as the sum of the square deviation between the experimentally observed activity of 
the test set compounds and the mean activity of the training set molecules. PRESS stands for 
“Predicted Residual Error Sum of Squares”. The sum of squares of the predicted residual errors 
over all individuals is the PRESS. 
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3. Results and discussion 
 
The results from our study, which employed KPLS modeling within the Schrödinger Canvas 
environment, reveal intriguing insights into the correlation between molecular structural 
properties and biological activity. Utilizing various fingerprint representations, including Linear, 
Radial, Dendritic, MOLPRINT2D, Atom pairs, Atom triplets, Topological, and MACCS, we 
conducted a comprehensive analysis to elucidate their efficacy in predicting biological activity. 
 
The statistical qualities of these models are shown in Table 1. Remarkably, the atom pairs 
fingerprint emerged as a standout performer, demonstrating exceptional correlation with biological 
activity, as evidenced by its remarkably high R2 value and low RMSE. Out of eight models 
developed, the fingerprint atom pairs gave a statistically significant 2D QSAR model with excellent 
regression coefficient values (R2=0.9624). High predictive ability of the models for the external 
test set data (R2pred = 0.7105) as well as low uncertainties. Therefore, the model with atom pair 
fingerprints is considered the best model. This finding underscores the importance of selecting an 
appropriate fingerprint representation in cheminformatics studies, with the atom pairs fingerprint 
showing promising potential for accurately predicting biological activity based on molecular 
structural properties. 
 
Among the fingerprint representations, we observed consistent performance metrics. The Linear, 
Radial, Dendritic, MOLPRINT2D, and Topological fingerprints exhibited low coefficients of 
determination (R2), indicating weak correlations with biological activity. However, the predictive 
accuracy, as measured by the RMSE and R2pred values, remained stable across these 
representations, suggesting similar abilities to predict biological activity on unseen data.  
 
Conversely, the Atom triplets and MACCS fingerprints exhibited relatively lower correlations with 
biological activity, indicating potential limitations in capturing the underlying structural features 
that influence biological responses. 
 

Table 1. Statistical quality parameters of KPLS models 
 

Model No. Fingerprint SD R
2
 RMSE R

2

pred
 

1 Linear 0.1584 0.9457 0.4182 0.5939 
2 Radial 0.1846 0.9263 0.4494 0.5311 
3 Dendritic 0.1585 0.9457 0.4368 0.5570 
4 MOLPRINT2D 0.2551 0.8592 0.4619 0.5047 
5 Atom pairs 0.1318 0.9624 0.3532 0.7105 
6 Atom triplets 0.0603 0.9921 0.5294 0.3493 
7 Topological 0.2576 0.8564 0.4401 0.5503 
8 MACCS 0.3660 0.7102 0.5350 0.3355 

 
The scatter plot in Fig. 2 displays observed versus predicted pIC50 values for both the training (black 
dots) and test sets (red dots) of FLAP inhibitors across various QSAR models. It is evident that 
experimental and predicted activities are closely aligned, particularly with the atom pairs 
fingerprint based QSAR, where most molecules exhibit residuals of less than 0.4. These results 
further affirm the exceptional predictive capability of the established model. 
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Figure 2. Actual versus predicted activities of FLAP inhibitors from various QSAR models 
 
The analysis of atomic contributions in the KPLS model provides valuable insights into the structural 
features of molecules that contribute positively or negatively to their biological activity. In the 
presented study, the relative contributions of individual atoms were visualized, allowing for a 
detailed assessment of favourable and unfavourable characteristics within the molecular structures. 
 
That is the relative contributions of individual atoms can be displayed in the molecules, allowing 
the visualization favourable and unfavourable characteristics of individual atoms in the structures 
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that helps to assess which atoms contributed positively or negatively towards the compound’s 
activity as depicted in Figure 3. For the assessment of atomic contribution to the model, three 
molecules were taken from each the dataset. The use of colored circles to denote the contributing 
roles of atoms provides a clear and intuitive visualization of their impact on the compound's activity. 
Atoms with positive contributions are colored green, indicating their favorable influence on 
biological activity, while atoms with negative contributions are colored red, suggesting their 
detrimental effect on activity. The intensity of the color reflects the magnitude of the contribution, 
enabling the identification of atoms with the most significant impact. 
 
Most of the atoms in 5-(5-cyclobutylpyridin-2-yl)pyrimidin-2-amine group are green in color. The 
observation that most of the atoms in this group are green suggests that the retention of this 
structural motif is crucial for predicting FLAP inhibitory activity. This indicates that the presence 
of the 5-(5-cyclobutylpyridin-2-yl)pyrimidin-2-amine group is associated with increased biological 
activity, aligning with the goals of drug design to enhance potency. Furthermore, the analysis 
suggests that substituting the cyclobutyl ring with any other ring structure may decrease the activity. 
This observation underscores the importance of the specific arrangement and substitution pattern 
within the molecule for maintaining or enhancing biological activity. It implies that the cyclobutyl 
ring provides a favorable interaction with the target receptor or enzyme, and altering this moiety 
may disrupt the binding interactions critical for activity. 
 
This study significantly advances the field by demonstrating the efficacy of KPLS modeling with 
molecular binary fingerprints in capturing the complex, non-linear relationships in the QSAR of 
FLAP inhibitors. Previous research often combined multiple techniques, such as pharmacophore 
modeling, docking, QSAR, and ADMET analyses, or utilized machine learning with GRID-
Independent Molecular Descriptors (GRIND) [21], [22], [23]. These methods provided robust 
predictions but required significant computational resources. Traditional QSAR and 3D-QSAR 
studies, which relied on simpler linear models and spatial descriptors, offered valuable insights but 
struggled with complex interactions. Our findings highlight the effectiveness of KPLS in managing 
non-linearities and leveraging detailed structural data, emphasizing the importance of advanced 
modeling techniques in QSAR studies. 
 
Overall, the detailed assessment of atomic contributions provided by the KPLS analysis offers 
valuable guidance for structure-activity relationship (SAR) studies and rational drug design efforts. 
By pinpointing key structural features that positively influence activity, researchers can focus on 
optimizing these elements to develop more potent and selective compounds with improved 
therapeutic properties. 
 

 
 

Figure 3. Colour map of atomic effects in KPLS model built from atom triplets fingerprints 
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4. Conclusion  
 
In conclusion, our study has provided valuable insights into the QSAR of FLAP inhibitors using 
KPLS modeling. Leveraging the Schrödinger Canvas environment, we analyzed a dataset of FLAP 
inhibitors to correlate molecular descriptors with biological activity. By employing KPLS, we were 
able to uncover intricate relationships between molecular structure and FLAP inhibitor potency. 
Out of the eight models developed, the "atom pairs" fingerprint yielded a statistically significant 
2D QSAR model with outstanding regression coefficient values (R2=0.9624). The model 
demonstrated high predictive ability for external test set data (R2pred = 0.7105), underscoring its 
robustness and reliability in accurately predicting biological activity based on molecular structure. 
 
A novel aspect of our study was the visualization of atomic contributions within FLAP inhibitors, 
allowing for the identification of key structural motifs influencing biological activity. Through this 
analysis, we identified specific atoms and structural features that contribute positively or negatively 
to FLAP inhibitor efficacy. Notably, the retention of the 5-(5-cyclobutylpyridin-2-yl) pyrimidin-2-
amine group emerged as crucial for predicting FLAP inhibitory activity, highlighting its importance 
in drug design efforts targeting this pathway. 
 
Our findings underscore the utility of KPLS modeling and atomic contribution analysis in 
elucidating QSAR in drug discovery. By providing insights into the structural determinants of FLAP 
inhibitor activity, our study contributes to the development of more effective anti-inflammatory 
therapeutics. Future research in this area may further refine our understanding of FLAP inhibitor 
SAR and facilitate the design of novel compounds with enhanced potency and selectivity. 
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