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Abstract: Nanocellulose is widely applied in various fields due to its superior characteristics. 
Several methods have been developed to synthesize it, but they still have limitedness as being non-
eco-friendly and inefficient use. Therefore, the synthesis of nanocellulose from sustainable sources 
is being developed using a simple and eco-friendly method. This study successfully produced a low 
viscosity gel suspension of cellulose nanofibers (CNF) from bacterial cellulose (BC) derived from 
Nata de Coco using a high shear mixer (HSM). The mixture of BC and water in a 1:1 ratio was 
processed with various rotational speeds and times in the HSM. The suspension result was 
characterized using an Ostwald viscometer, UV-vis spectrophotometer, lux meter, scanning 
electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), particle size analyzer 
(PSA), and x-ray diffraction (XRD). Based on the characterization, it was confirmed that higher 
rotational speeds and extended processing times reduced the suspension viscosity and increased 
light transmittance, indicating a reduction in BC size to the submicron/nanometer scale. The best 
light transmittance was achieved with the HSM at 4500 rpm for 180 min, resulting in a viscosity 
drop from 232.67 mPa.s to 1.45 mPa.s. Scanning electron microscopy (SEM) and X-ray diffraction 
(XRD) analysis showed that the CNF retained its fibrous structure with nanometer-scale widths and 
high porosity without significant changes in crystallinity. 
 
Keywords: high shear mixer; bacterial cellulose; cellulose nanofibers; viscosity; light 
transmittance 

 
1. Introduction 
 
Nanocellulose has attracted significant attention in materials research due to its superior properties, 
such as excellent mechanical strength, biocompatible, biodegradable, and high surface area [1], [2], 
[3]. Nanocellulose holds great promise for applications in biomedicine, energy storage devices, 
cosmetics, tissue engineering, 38 thickeners, nanocomposites, and more [4], [5], [6].  Bacterial 
cellulose (BC) is one of the potential raw materials for synthesizing nanocellulose. One of the BCs 
is Nata de Coco, a fermentation product of coconut water. Nata de coco is a potential material for 
making nanocellulose because the raw material (coconut water) is easy to find. In 2019, the global 
coconut plantation area was approximately 11.63 million hectares, in which the 79.1% was in Asia. 
Indonesia accounted for about 29.3% of the total coconut plantation area in Asia. The Directorate 
General of Estate Crops (DGEC) reported that Indonesia had 3.4 million hectares of coconut 
plantations, comprising 3.27 million hectares of tall coconut plantations, and the rest were hybrid 
coconut plantations [7]. 
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The development of bacterial celluloses (BC) into nanocelluloses, such as cellulose nanofibers 
(CNF) and cellulose nanocrystals (CNC), offers enhanced material properties, making it lighter, 
more stable, stronger, and functional [8]. CNF has a long, flexible fiber network, and a larger 
diameter than CNC, making it suitable for various applications [3]. CNF from BC can be synthesized 
through various methods, including chemical, biological, and mechanical approaches. Chemical 
methods typically involve hydrolysis using strong acids such as sulfuric, bromic, and hydrochloric 
acids. However, this method has disadvantages, such as health and environmental risks, low yield, 
and significant cellulose degradation [9], [10]. However, more eco-friendly biological methods face 
challenges in isolating pure enzymes and require long processing times. On the other hand, 
mechanical methods utilize equipment to reduce the BC particle size to produce CNF. This process 
offers a safer and more eco-friendly alternative [11]. 
 
Nano-sized particles of bacterial cellulose have been successfully synthesized using a mechanical 
method with a blender, followed by acid hydrolysis with sulfuric acid and then grinding [12]. XRD 
analysis showed that the crystal size obtained was approximately 9.11 nm, with a crystallinity index 
of approximately 67.27%. However, the particle size remained relatively large, approximately 

~30-60 μm, showing inhomogeneous [12]. Nanocellulose can be synthesized from BC [13] using 
the aqueous counter collision (ACC) method, where cellulose fibers are broken down to the 
nanoscale using a colliding water flow. The resulted nanocellulose fibers measured about ~30 nm 
and retained over 70% crystallinity. However, these fibers tended to aggregate, and beyond a 
certain point, further size reduction could not be achieved [13]. Nano-sized particles of BC were 
synthesized [10] through ultrasonic process, resulting in transparent nanofiber suspension with 
porous structure and diameter of 60 nm. The sonication process used sound energy to create 
acoustic cavitation, causing the cutting and reduction of cellulose particle size. However, this 
method requires high costs and power consumption [10]. 
 
Previous methods have several disadvantages, such as the combination of mechanical and chemical 
methods makes the process less eco-friendly. There is also agglomeration of nanocellulose beyond 
a certain threshold. This study examines the use of high shear mixer to synthesize SNF from bacterial 
cellulose (BC). It is easier and more efficient because it does not have many steps in the process and 
does not cause pollution. The use of high shear mixer is very efficient in processing large volumes, 
with energy efficiency reaching for 70% to 80%, thus allowing reduced energy consumption [14]. 
Furthermore, the HSM method relies only on mechanical principles without any combination with 
chemical methods. The working mechanism of the HSM is based on hydrodynamic forces, including 
shear forces, particle collisions, and jet cavitation, which lead to the breakdown and reduction of 
BC particles to the nanoscale [15], [16]. This work utilized HSM to convert BC of Nata de Coco to 
CNF using HSM in various rotational speed (rpm) and processing time. HSM can significantly 
reduce costs and energy consumption compared to ultrasonic mechanical methods. In this process, 
the CNF produced from BC exhibits a web-like structure’s high porosity, and homogeneous particle 
size, making it a promising, straightforward, and co-friendly approach for synthesizing high-quality 
CNF. 
 
2. Material and methods 
 
2.1 Synthesis of Cellulose Nanofiber (CNF) 
 
Bacterial cellulose (BC) was produced through the fermentation of coconut water by using 
Acetobacter Xylinum. The process began by boiling 5 liters of coconut water. Once it boils, 500 
grams of white sugar, 25 grams of ammonium sulfate, and 30 mL of glacial acetic acid were added. 
About 300 mL of the prepared solution was poured into a plastic container, sealed, and cooled to 
room temperature. The addition of glucose served as a culture medium and a carbon source, while 
ammonium sulfate functioned as a nitrogen source in the bacterial metabolism process. Glacial 
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acetic acid was added to create an acidic environment to support optimal bacterial growth. 
Acetobacter xylinum is required to optimize bacterial cellulose production. After cooling, 
Acetobacter xylinum was added at 10% of the medium's volume, and the mixture was fermented 
for 7 days. Once fermentation was completed, the resulted bacterial cellulose was soaked and 
washed with hot water to remove residual impurities and improve its quality [17]. The obtained BC 
was cut into smaller pieces and then mixed with water at a BC-to-water weight ratio of 1:1. CNF 
was synthesized from the BC and water mixture through mechanical treatment using three different 
fluid dynamics routes. The first route involved fluid dynamics processing using a kitchen blender at 
a speed of 15000 rpm for 5 minutes. The second route combined fluid dynamics with a kitchen 
blender for 5 minutes, followed by ultrasonication at 50°C with various ultrasonic durations (30, 
60, and 90 minutes). The third route combined fluid dynamics using a kitchen blender for 5 
minutes, followed by further processing with an HSM at different rotational speeds (1500, 3000, 
and 4500 rpm) and various durations (60, 120, and 180 minutes). 
 

START

Preparation of tools and 

materials

The synthesis of BC is carried out 

by mixing coconut water, white 

sugar, ammonium sulfate, glacial 

acetic acid, and Acetobacter 

xylinum, then allowing 

fermentation to proceed for 7 

days

Characterization

Data recording

STOP

The process 

produces BC

Yes

No

Conversion of BC into CNF

The main route involves using a blender for 5 

minutes, followed by further processing with an 

HSM (High-Speed Mixer) at varying rotational 

speeds (1500, 3000, and 4500 rpm) for different 

durations (1, 2, and 3) minutes.

The comparative route II is carried out using a 

blender for 5 minutes, followed by ultrasonication 

at a temperature of 50°C for varying durations (30, 

60, and 90) minutes.

The comparative route I is carried 

out using a blender for 5 minutes.

 
 
Figure 1. Flow diagram of Cellulose Nanofiber Synthesis Fluid Dynamic in High Shear Mixer 

with various different routes 
 
2.2 Characterization 
 
The light intensity of the sample was measured using a digital lux meter AS803. Visual observations 
to evaluate the total percentage of light transmitted through the sample were conducted using a 
UV-vis spectrophotometer at a wavelength of 400 nm [18]. The sample's viscosity was measured 
using an Ostwald viscometer [19]. Based on the results of visual characterization of light 
transmittance, light intensity, and viscosity, three samples were selected: the worst result, the best 
result, and the initial sample. Functional group analysis was performed using a PerkinElmer 
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Spectrum IR Version 10.6.1 instrument. Crystallinity index analysis was conducted using a 

PanAnalytical instrument with a 2θ angle, and CuKa radiation at 1.54060 nm. CuKα radiation and 
operating with a step size of 0.01°. Further analysis of the 2D peaks was performed using OriginPro 
software. Further analysis was conducted to calculate the crystallinity index (CI) using the Segal 
method, formulated in Equation 1. 
 

𝐶𝐼 (%) =
𝐼002 − 𝐼𝑎𝑚

𝐼002
 𝑥 100 (1) 

 

Where I₀₀₂ is the maximum intensity of the diffraction peak from the (002) plane at a 2θ angle 
around 22° and 23°, and Iam is the minimum intensity of the amorphous phase diffraction taken at 

a 2θ angle between 15°-19° [10], [12]. The average crystallite size is calculated using the Debye-
Scherrer equation at the diffraction peak of the (002) lattice plane, as shown in Equation 2 [12], 
[20].  
 

𝐷 (𝑛𝑚) =
𝐾𝜆

𝛽 cos 𝜃
 (2) 

 

Where K is the Scherrer constant (0.9), λ is the wavelength of the light used (Cu, λ = 0.15406 

nm), β is the full width at half maximum (FWHM) (in radians), and θ is the diffraction angle (in 
radians) [20], [21]. Morphological analysis was carried out by using a SEM FEI Inspect-S50 
instrument with a voltage of 20 kV. PSA testing was conducted on a Horiba Scientific SZ-100 
instrument applying the scattering light intensity method, with further analysis performed using 
OriginPro software. 
 
3. Results and discussion  
 
3.1 Visual observation of light transmittance 
 
Figure 2 shows the suspension obtained from processing Nata de Coco using a blender for 5 
minutes, ultrasonication, and a high-shear mixer (HSM) with mixer speed and processing time 
variations. The HSM sample (4500 rpm, 180 minutes) visually appeared more transparent than the 
other samples. This result indicates that nano-sized fiber suspensions tend to be more transparent 
than micro-sized fibers [10]. This means that smaller particle size will lead to an increase in 
transparency. Transparency and suspension homogeneity significantly increase with longer 
processing times [10]. 
 

 
 
Figure 2. Visual appearance of the conversion results of Nata de coco into nanocellulose at 

various mixer speeds (rpm) and processing times (t) 
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Figure 3 shows the quantitative test results for light intensity passing through the liquid suspension, 
measured using a lux meter. As seen in Figure 3, the highest light intensity was obtained for the 
HSM sample (4500 rpm, 180 minutes). Longer processing times and higher mixing speeds can 
enhance the fragmentation of cellulose fibers into smaller, finer particles [22]. Smaller and finer 
particles have better capabilities for scattering and transmitting light, which enhances light intensity 
[23]. The working mechanism of HSM is based on hydrodynamic forces, including shear forces, jet 
cavitation, and collisions, which accelerate the fragmentation of cellulose fibers into a more 
homogeneous nanoscale [16], [24]. Smaller, finer nanocellulose particles allow more light to be 
transmitted or reflected, reducing light resistance and increasing the light intensity measured by the 
lux meter. Smaller particle sizes improve optical transparency and enhance light transmittance [25]. 
 

 
 
Figure 3. Light intensity test results using a lux meter 
 

 
 
Figure 4. Light transmittance measurement using a UV-VIS spectrophotometer 
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Figure 4 illustrates the measurement results using a UV-Vis spectrophotometer at a wavelength of 
402 nm. Absorbance is inversely proportional to transmittance. Absorbance is the amount of light 
absorbed, while transmittance is the amount of light transmitted [26]. Figure 4 shows that the 
suspension obtained at a mixing speed of 4500 rpm and a processing time of 180 minutes has a light 
transmittance value for 5.6 times greater than the initial Nata de Coco (blender 15000 rpm for 5 
minutes). Fewer molecules absorb light, allowing more light to pass through the sample. Higher 
crystallinity tends to increase back reflection and reduce absorbance due to increased light 
scattering, increasing light transmittance [27], [28]. Therefore, higher mixing speeds and longer 
processing times lead to decreased absorbance and increased transmittance. 
 
3.2 Viscosity analysis  
 
Figure 5 shows the viscosity measurement results for each sample using an Ostwald viscometer. 
Nanocellulose has a higher viscosity than water due to strong hydrogen bonds between its fibers, 
which allows for a stable network in solution and increases viscosity [29]. Higher mixing speeds and 
longer mixing times (HSM, 4500 rpm, 180 minutes) decrease the viscosity of nanocellulose; this is 
because the cellulose fibers in suspension are cut into smaller sizes, reducing the molecular chain 
length and its ability to form a cohesive network [30]. The highest viscosity (232.66 mPa.s) and 
lowest viscosity (1.45 mPa.s) were observed in the samples processed with a blender for 5 minutes 
and with HSM (4500 rpm, 180 minutes), respectively, showing a 160-fold reduction in viscosity; 
this demonstrates that the HSM process effectively breaks the fiber bonds in Nata de Coco. The 
high viscosity values are due to particle structure, cohesive forces [31], and hydrogen/Van der 
Waals bonds, which are disrupted by the shear forces in the HSM. 
 

 
 
Figure 5. Viscosity values of samples (mPa.s) 
 
3.3 Structural of morphology analysis 
 
Figure 6 presents the SEM characterization results for samples (a) blender for 5 minutes, (b) HSM 
(1500 rpm, 60 minutes), and (c) HSM (4500 rpm, 180 minutes). Overall, it can be observed that 
nanocellulose exhibits long, interconnected fiber strands originating from the solid nata de coco, 
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which has been cut down through mechanical treatment [32]. In Figure 6 (a), the structure appears 
less homogeneous, with relatively larger pores. This indicates that the mechanical process of 
blender 5 min was not optimal, leaving the fibers with a coarser texture at a micro-scale. Figure 6 
(b) shows that most fibers have been reduced to the nanometer scale, with diameters of 
approximately 78.49 nm and 169.40 nm, finer pore networks, and a more organized structure. 
Figure 6 (c) displays a web-like nanostructure with diameters of approximately 55.98 nm and 84.51 
nm, a higher distribution of pores, and more homogeneous fibers. This finding is consistent with 
previously reported findings that mechanical treatment can produce cellulose fibers with diameters 
below 100 nm [33], [34]. Aggregated web-like structures consisting of interwoven nano-threads, 
known as nanofibrils, in bacterial cellulose sheets derived from nata de coco [32]. Additionally, 
Figure 6 (c) shows that the sample has higher porosity, as the nanofiber structure forms multiple 
fiber networks, creating more empty spaces between fibers. High porosity in nanocellulose is 
crucial in various applications, including tissue engineering, gas sensors, fuel cells, catalysis, fluid 
purification and filtration, and protein immobilization and separation [32].  
 

 
 

(a) 

 
 

(b) 
 

 
 

(c) 
 
Figure 6. SEM analysis: (a) Blender 5 min, (b) HSM (1500 rpm, 60 min), and (c) HSM (4500 

rpm, 180 min) 
 
Figure 7 presents the SEM-EDX patterns for (a) blender 5 minutes, (b) HSM (1500 rpm, 60 
minutes), and (c) HSM (4500 rp, 180 minutes). Elemental analysis of nanocellulose was conducted 
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using energy-dispersive X-ray spectroscopy (EDX). Figure 7 presents the percentage of elements 
found in the nanocellulose samples. All treatments indicated similar elemental compositions, with 
the dominant elements being C and O. Carbon (C) is the primary element in nanocellulose. At the 
same time, oxygen (O) is crucial as it forms part of the hydroxyl group (-OH) in the nanocellulose 
structure [35]. Figure 7 illustrates that, across the three samples, the weight percentage of C ranged 
from 58.4% to 64.4%, with the highest percentage observed in the high shear mixer treatment for 
180 minutes, while the weight percentage of O ranged from 33.8% to 40.6%. The results support 
the study on characterized nanocellulose elements using EDX, finding 71.04% for C, 24.85% for 
O, and very low percentages for other elements, such as Mg, S, Na, Cl, K, and Ca [36]. Sodium 
(Na) and magnesium (Mg) originated from the bacterial cellulose fermentation process were used 
as a fermentation medium, while the other trace elements were likely resulted from processing or 
contact with equipment during sample preparation [37]. 
 

 
 

(a) 

 
 

(b) 
 

 
 

(c) 
 

Figure 7. SEM-EDX analysis: (a) blender 5 min, (b) hsm (1500 rpm, 60 min), and (c) hsm (4500 
rpm, 180 min) 

 
Table 1. Elemental weight percentage 
 

Variable 
%Weight 

C O Mg S Cl K Na Si Ca 

Blender 5 min 58.4 40.6 0.1 0.6 0.1 0.2 0 0 0 

HSM 60 min 58.5 39.9 0.1 0.6 0.2 0.2 0.2 0.1 0.1 

HSM 180 min 64.6 33.8 0.1 0.7 0.2 0.3 0 0.1 0 
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3.4 Functional group analysis 
 
Figure 8 presents the FTIR test results for samples processed with a blender for 5 minutes (red), 
HSM (1500 rpm, 60 minutes) (black), and HSM (4500 rpm, 180 minutes) (blue). Generally, each 

sample shows a broad peak at approximately ~3337.60 cm⁻¹ - 3339.30 cm⁻¹ due to the stretching 
vibration of hydroxyl groups (O-H), indicating the presence of water molecules in the sample [12], 
[32], [38]. The HSM sample (4500 rpm, 180 minutes) shows a broad O-H peak with reduced 
intensity, suggesting more orderly hydrogen interactions [39]. Higher mixing speeds and longer 
processing times result in decreased intensity and a shift in the O-H peak, indicating the breaking 
of chains in bacterial cellulose [10], [40]. Additionally, each sample shows a small peak at 

approximately ~2100 cm⁻¹ associated with C≡C bond stretching [10], [41]. The high-intensity but 

narrow peak at approximately ~1637 cm⁻¹ in each sample is due to the stretching of C=C bonds 
from the alkene functional group [32], [41]. The HSM samples show peaks at approximately ~1320 

cm⁻¹ and 1431 cm⁻¹, associated with C-H bending and CH₂ bending from the alkane (cellulose) 
functional group [41]. 
 

 
 
Figure 8. FTIR analysis results 
 

In Figure 8, other significant peaks can be observed at approximately ~1160-1100 cm⁻¹ and ~1050 

cm⁻¹, associated with the asymmetric stretching vibrations of the O-C-O and C-O bonds from the 

alcohol functional group (cellulose) [12], [38], [41]. Peaks at approximately ~1429 cm⁻¹, 1163 

cm⁻¹, and 1111 cm⁻¹ indicate cellulose type Iβ  [42]. Peaks between 850-400 cm⁻¹ represent a 
region with bands corresponding to heavy-atom bending and rotation [43]. Peaks at approximately 

~89-898 cm⁻¹ are caused by the glycosidic linkage between glucose units in cellulose [44].  
 
3.5 Particle Size Analyzer (PSA) 
 
Figure 9 shows the PSA curve patterns for the samples processed with (a) a blender 15000 rpm for 
5 minutes, (b) HSM at 1500 rpm for 60 minutes, and (c) HSM at 4500 rpm for 10 minutes. The Y-
axis represents intensity distribution (percentage), and the X-axis represents particle size. The blue 
bar chart shows intensity distribution by particle size. At the same time, the red line indicates the 
undersize percentage of the sample, representing the cumulative proportion of particles smaller 
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than the specified size [45]. The average particle sizes of the samples processed with the blender for 
5 minutes, HSM (1500 rpm, 60 minutes), and HSM (4500 rpm, 180 minutes) were approximately 
1639.70 nm, 1173.10 nm, and 599.50 nm, respectively. 
 
Figure 9, illustrates that significant cellulose particle size reduction occurs at higher rotational 
speeds and longer processing times. At lower speeds, shear forces are not strong enough to break 
particles into smaller sizes. Conversely, higher speeds and longer durations increase shear force and 
turbulence, leading to more effective cellulose particle fragmentation [46]. The visible smallest 
structural unit of cellulose I is a bundle of parallel glucan chains, commonly known as cellulose I 
fibrils [47]. These fibrils are held together by a network of hydrogen bonds and Van der Waals 
forces, aggregating into larger fibril aggregates [47]. High shear forces generated by the rapid 
rotation of the rotor against the stator in HSM (4500 rpm, 180 minutes) are able to reduce the 
initial fibril aggregate size from ~1639.70 nm to approximately ~599.50 nm. This mechanism can 
be explained by the breaking of hydrogen bonds and Van der Waals forces between fibers that form 
cellulose fibril aggregates under high shear force, leading to nanocellulose particle size reduction 
without damaging the crystalline and amorphous structure [47]. 
 
 

 
 

(a) 

 
 

(b) 
 

 
 

(c) 
Figure 9. PSA test results from (a) blender for 5 minutes; (b) HSM at 1500 rpm for 60 minutes; 

and (c) HSM at 4500 rpm for 180 minutes 
 
Figure 9 (a) shows a wider particle size distribution with a lower peak, indicating many particles 
with various sizes. In contrast, Figure 9 (b) shows a narrower particle size distribution within a 
smaller size range (< 3000 nm), indicating improved homogeneity. Figure 9 (c) displays the 
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narrowest particle size distribution, with a more concentrated size range (< 1000 nm) and a higher 
peak, signifying highly homogeneous particle sizes [48], [49], [50]. Higher rotational speeds and 
longer processing times increase the homogeneity of nanocellulose particles. Narrow particle size 
distribution is crucial for the stability, consistency, and performance of nanomaterials in various 
applications. The functionality of nano-based devices improves with homogeneous nano-particle 
size distribution [48], [51].  
 
3.6 Crystallinity index analysis 
 
Figure 10 shows the XRD characterization results for samples processed with a blender (5 minutes), 
HSM (1500 rpm, 60 minutes), and HSM (4500 rpm, 180 minutes). The diffraction peaks in the 
diffractogram are due to crystal scattering, while the diffuse background is due to amorphous 
regions. According to the International Centre for Diffraction Data (ICDD), the diffraction peaks 

of native cellulose are located around 2θ = 14.90°, 16.49°, and 22.84°, corresponding to the 
crystal planes (001), (110), and (002), respectively [12]. The XRD patterns of each sample show 

diffraction peaks at 2θ positions around 14.52°-14.65°, 16.63°-16.73°, and 22.73°-22.84°, 
indicating the presence of crystalline cellulose type I structure [52]. These values align with ICDD 

data, showing the presence of the Iβ polymorph typically found in bacterial cellulose (BC) [12]. 
These three peaks serve as primary indicators confirming that each sample retains the crystalline 

structure of cellulose type Iβ, despite undergoing various mechanical treatments [12]. However, 
there is no change in the cellulose crystal structure during nanocellulose conversion.  
 

 
 
Figure 10. XRD diffraction pattern of different mixer speed and processing time of HSM 
 

Table 2. shows the crystallinity index (X₀₀₂) values and crystallite size (D₀₀₂). In Figure 9, presents 
that mechanical treatment at higher speeds and longer durations tends to produce broader XRD 
peaks which correspond to smaller crystallite sizes [12]. These results are consistent with the 
average crystallite size calculations shown in Table 1. The friction and impact forces generated by 
the blender at 15000 rpm, HSM 1500 rpm and HSM 4500 cause the cellulose fibers to fragment 
into smaller crystallite sizes [53]. Bacterial cellulose has high structural resilience, especially in the 
crystalline regions, so crystallinity does not significantly change although having been through 
mechanical processing [53]. Structural resilience is able to enhance thermal stability because these 
bonds help prevent degradation or chain scission of polymers at high temperatures. Similar 
properties are found in CNF produced from plant cellulose which also possesses good thermal and 
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chemical stability, making it a potential candidate for applications in electrochemical sensor 
electrodes. However, since CNF is not conductive, modification with materials that have high 
conductivity is needed to improve electrode performance  [54], [55]. The resulted crystallinity 
index shows that mechanical processing does not significantly affect the amorphous and crystalline 
structure of cellulose but rather reduces its size. The obtained crystallinity index aligns with the 
finding of previous study, showing a crystallinity index of ~59.50% for bacterial cellulose 
underwent a mechanical processing [32]. 
 

Table 2. Crystallinity index (X₀₀₂) and crystallite size (D₀₀₂) Values 
 

Sample D002 Nm X002 % 

Blender 5 min 6.09 59.20 
HSM (1500 rpm, 60 min) 5.06 58.30 
HSM (4500 rpm, 180 min) 3.24 54.80 

 
4. Conclusion  
 
Cellulose Nanofiber (SNF) has been successfully synthesized using a mechanical high shear mixer 
method. The results of functional group characterization, light transmittance, viscosity, particle 
size distribution, crystallinity index, and morphology analysis support the findings. The study 
revealed that the sample processed at 4500 rpm for 180 minutes achieved the desired nanocellulose 
properties, with the smallest diameter measured at 55.98 nm. However, this research has not 
succeeded yet in breaking down and enhancing the crystalline structure of the nanocellulose. Future 
studies are suggested to utilize different raw materials for BC production and experiment with 
various rotation speed and processing time. However, this method potentially produces CNF in a 
practical way without requiring additional chemicals, leading it to be an eco-friendly method. 
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