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Abstract: This article aims to explore the characteristics of tangent hyperbolic nanofluid flow over 
a nonlinear exponentially stretching sheet with suction or injection embedded in a Darcy porous 
medium. We consider a non-Newtonian magnetohydrodynamic fluid with prescribed surface 
temperature and temperature-dependent viscosity, relevant to applications in aerospace, 
automotive and marine engineering, electronic cooling, solar-energy systems, and filtration. Given 
its fundamental importance, the study of prescribed exponential order heat flux (PHF) and 
prescribed mass flux (PMF) of hyperbolic tangent nanofluid became a key in research aimed at 
improving the efficiency and performance of these systems. The partial differential equations are 
converted into ODES by using transformation procedure. The system of transformed equations is 
numerically solved by Chebyshev spectral method. Graphical results illustrate the impact of key 
parameters on concentration, velocity, and temperature profiles, while tabulated data report the 
local Nusselt number, Sherwood number, and skin friction coefficient. Our results show that 
increasing both the power-law index and the variable-viscosity parameter reduces the fluid’s 
velocity while elevating its temperature and concentration. The comparative analysis confirms a 
high degree of agreement with previous studies. This research holds significant importance as it 
focuses on the extensive utilization of tangent hyperbolic nanofluids in cooling electronic 
components that produce substantial heat during their operation. 
 
Keywords: tangent hyperbolic nanofluid; variable heated viscosity; exponential stretching sheet; 

PHF and PMF; Chebyshev spectral method 

 
1. Introduction 
 
In the chemical engineering field, the tangent hyperbolic rheological model is preferred over the 
traditional Newtonian model which describes fluid behavior with a linear stress-strain relationship.  
The tangent hyperbolic model outperforms other non-Newtonian formulations in terms of 
computational effectiveness, practical utility, and robustness [1]. Additionally, it is deduced from 
the liquid kinetic theorem, as opposed to empirical relation. No known model can encompass the 
entire spectrum of non-Newtonian fluids characteristics. Several non-Newtonian models are used 
to illustrate non-Newtonian fluids, one of which is the tangent hyperbolic model [2]. One of the 
first researchers in this field was Sakiadis [3], who studied how a boundary layer flows across a 
continuously solid surface at a constant speed. Crane [4] developed the concept and characterized 
the viscous fluid resulting in a smooth stretched surface with a linear velocity variation. Discovering 
an equivalent solution is the most fascinating aspect of the investigation. Wang [5] studied the 
laminar flow of unsteady viscous fluid, and similarity solutions to the governing equation were 
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obtained. Non-Newtonian fluid across stretching surfaces and using the shooting method for getting 
a numerical solution to the governing equation was discussed by Cortell [6]. Malik et al., [7] 
presented the numerical solutions of tangent hyperbolic nanofluid under the influence of MHD 
through a stretching cylinder by applying the Keller box method. Researcher-produced material on 
boundary layer flows over stretched sheets can be found in references [8], [9], [10]. 
 
Since non-Newtonian boundary layer fluid through a stretching surface has many different industrial 
uses, including polymers, textiles, food processing, and so on, it had been the focus of the research 
for a long time. Non-Newtonian fluids are more commonly used in modern manufacturing than 
Newtonian fluids [11]. These additions can enhance fluid performance expanding the range of 
applications. In every manufacturing process, the quality of the finished product is greatly 
influenced by the rate of cooling during heat transfer operations. Magnetohydrodynamics (MHD) 
is one of the variables that will be utilized for determining the outcome of the desired attribute and 
assessing the rate of cooling. Alali and Megahed [12] introduced an MHD Casson nanofluid film 
flow as a result of an unstable stretching surface with radiation effect and the slip velocity, and 
magnetic field phenomenon. The magneto-hydrodynamics flow of a hybrid nanofluid (Ag-
CuO/H2O) through a permeability stretched surface porous medium with magnetic field, 
suction/injection, and multiple slips impacts was explained by Yahaya et al., [13]. Shahzad et al., 
[14] demonstrated the MHD of Jeffery nanofluid flow over a permeable stretched sheet besides 
viscous dissipation and heat generation influences. Abbas et al., [15] simulated the thermal 
conductivity of Maxwell nanofluid with magnetic field impacts on a vertically stretched sheet across 
the porous medium. Vitta et al., [16] reported the numerical study of the boundary layer MHD of 
a Sisko nanofluid through a permeability stretched surface using Runge-Kutta fourth-order scheme. 
The MHD effects in a 3D flow for suspended nanofluids (Cu-water/methanol) through stretching 
surface were discussed by Akber et al., [17]. Nabwey et al., [18] had provided heat transfer in 2D 
of Carreau ternary-hybrid nanofluid flow with MHD through an exponential stretched of a curve 
surface. Naveed et al., [19] has considered hydro-magnetic of couple stress fluid flow over a porous 
stretchable oscillatory sheet with heat transfer in the presence of homogeneous and heterogeneous 
chemical reactions. Existing studies [20], [21], [22], [23] performed the boundary layer flow on 
stretched sheet by using Newtonian and non-Newtonian nanofluids, at elevated temperature and 
various physical conditions.   
 
A nanofluid consists of nanometer-sized particles dispersed in a conventional base fluid, improving 
the combined heat and mass transfer processes. This innovation emerged after decades of 
experimental research aimed at overcoming the poor thermal conductivity of traditional heat 
transfer fluids. Previous attempts, including flow geometry modifications and addition of micro- or 
milli-sized particles, proved ineffective. The nanotechnology approach successfully addressed these 
limitations, leading to widespread applications across multiple industries. Today, nanofluids play 
crucial roles in electronics cooling, automotive systems, refrigeration, renewable energy (solar 
heaters and fuel cells), nuclear power, and various thermal management applications, marking a 
significant advancement in heat transfer technology. Choi [24] introduced the first mention of 
nanofluids in 1995. Scientists and engineers can now conduct study in a new field thanks to this 
trial. Boungiorno et al., [25] discovered nanofluid applications for nuclear reactors and they made 
the argument that nanofluids are more advantageous economically and for nuclear reactor safety 
than their base fluid counterparts. Wang and Mujumda [26] examined the studies on nanofluids by 
numerous researchers. They pointed out that it is extremely difficult to theoretically predict the 
thermo-physical characteristics of nanofluids based on observations of thermal conductivity, 
viscosity, etc. The nanofluid flow of the boundary layer through the stretching sheet were firstly 
discussed by Khan and Pop [27]. They discovered that the model used for the nanofluid includes 
Brownian motion and that thermophoresis effects are important. Hayat et al., [28] has investigated 
the effects of mixed convection, thermophoresis, and Brownian motion on the MHD boundary 
layer of thixotropic nanofluid flow. Ferdows et al., [29] studied numerical solution for the 
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incompressible boundary layer flow of nanofluid with porous medium and heat generation and 
viscous dissipation effects over a moving plate. Reddy and Sreedevi [30] presented the thermal 
radiation of nanofluid across an inclined plate with a porous medium, chemical reaction and solved 
numerically using the finite element method. Awati et al., [31] discussed heat transfer of the 
boundary layer of nanofluid moving over a permeable stretched surface and solved numerically by 
using the Chebyshev collocation method. Maiti and Mukhopadhyay [32] considered magnetic 
impacts on a boundary layer flow of hybrid nanoliquid through a divergent porous channel.  Many 
researchers have studied boundary layer flows of Newtonian and non-Newtonian nanofluids 
through stretching sheets under various thermal and physical conditions [33], [34], [35], [36], [37]. 
However, these cited studies primarily focused on constant viscosity and lacked a comprehensive 
analysis of the combined effects of magnetic fields, variable viscosity, and realistic boundary 
conditions such as prescribed heat flux (PHF) and prescribed mass flux (PMF). Our study directly 
addresses these limitations by incorporating these critical factors into the investigation. 
 
In addition to the significance of a magnetic field in heat transfer and boundary layer flow, viscous 
dissipation is included in the energy equation. The energy source and viscous dissipation both play 
important roles in altering temperature distribution and, consequently, heat transfer rate [38]. 
Applications for this process include the processing of polymers and the ducting of oil products.  
Viscosity dissipation's impact on natural convection was initially studied by Gebhart [39]. He came 
to the conclusion that viscous dissipation could not be ignored in a natural convection flow of a fluid 
with a high Prandtl number or a flow subject to strong gravitational forces.  Following that, studies 
on the impact of viscous dissipation were conducted because of its uses in the lubrication, power 
generation, and plasma physics sectors, among other industries. Cortell [40] discussed the viscous 
dissipation effect and variable surface temperature on viscous flow over a stretching sheet. The 
impact of viscous and ohmic dissipation on the MHD boundary layer flow of a viscoelastic fluid over 
a stretching sheet was examined by Abel et al., [41]. Ramandevi et al., [42] investigated the effects 
of the viscous dissipation on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux. 
Recently, Anitha et al., [43] studied the entropy generation for non-Newtonian tangent hyperbolic 
fluid in a microchannel under effect non-linear thermal radiation. Other advancements in this area 
have been explored through significant investigations by esteemed researchers [44], [45], [46]. 
 
A noticeable gap in the literature exists regarding the combined influence of exponentially varying 
viscosity, magnetic field effects, and non-standard boundary conditions such as prescribed heat and 
mass flux (PHF and PMF) on the flow behavior of tangent hyperbolic nanofluids. While previous 
studies have explored aspects of non-Newtonian nanofluid flow, they have not sufficiently 
addressed the interplay between variable viscosity, magnetic fields, Brownian motion, and 
suction/injection effects in such configurations. To model these transport phenomena accurately, 
the present study adopts the Buongiorno model, which focuses on Brownian motion and 
thermophoresis as dominant mechanisms in nanofluid transport, without considering the explicit 
size of nanoparticles. This study aims to fill the identified gap by analyzing the complex interactions 
of these parameters over a nonlinear stretching surface. The incorporation of exponentially 
temperature-dependent viscosity provides a more realistic model, and the use of the Chebyshev 
spectral method allows for accurate simulation of the governing flow dynamics. 
 
In real-world applications like biomedical fluid dynamics, where precise predictions of fluid 
behavior around biological structures or in medical devices are critical, understanding the flow 
dynamics driven by variable viscosity and specific boundary conditions (PHF and PMF) is key [47], 
[48]. These discoveries can help improve fluid-based system efficiency and safety in industrial and 
medical settings by optimizing design parameters. 
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2. Material and methods 
 
Newtonian fluids display a straightforward flow where their viscosity remains constant regardless 
of how fast they are sheared. In contrast, non-Newtonian fluids, like the tangent hyperbolic 
nanofluid in this research, show a more complex behavior where their viscosity decreases as the 
shear rate increases. This characteristic makes them particularly well-suited for simulating intricate 
flow patterns in cutting-edge engineering applications. In addition, the governing equations are 
solved numerically using the Chebyshev collocation method (CCM). This method is a very precise 
numerical technique for solving differential equations, especially effective for boundary layer 
problems with smooth solutions. It works by approximating the solution using Chebyshev 
polynomials and solving the equations at specific Chebyshev–Gauss–Lobatto collocation points. 
This method offers several benefits, such as exponential convergence, the ability to provide a global 
approximation, and efficient handling of boundary conditions. Because it can accurately capture 
steep changes with fewer data points, it's particularly well-suited for nonlinear and non-Newtonian 
fluid flow problems, like those found in nanofluid dynamics over stretching surfaces. 
 

 
 
Figure 2. Flow chart of methodology applied 
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Before delving into the flowchart, we need to detail the numerical procedure used to solve the 
converted system of equations. This flowchart visually maps out the computational steps, from 
transforming the equations to applying the Chebyshev spectral method and finally obtaining the 
numerical solutions. This guide ensures readers can easily follow the methodology and grasp the 
solution approach. The numerical workflow is summarized as follows: 
 

1. Start: Initialize the boundary value problem (BVP) derived from the transformed ODEs. 
2. Boundary Value Problem: Define boundary conditions for the exponential stretching 

sheet. 
3. Chebyshev Spectral Method: 

• Discretize the domain using Chebyshev collocation points on [−1,1] 

• Convert the ODEs into algebraic equations via spectral differentiation matrices. 
4. Solving: Numerically solve the system using iterative or direct solvers. 
5. End: Extract solutions (velocity profiles, shear stress) and validate against benchmarks. 

 
2.1 Mathematical model and formulation 
 
We investigated the non-Newtonian boundary layer of tangent hyperbolic nanofluid flow through 
an exponentially nonlinear stretching surface, solved numerically using the Chebyshev spectral 

method, as illustrated in Figure 1, with the flow confined to the region 𝑦 > 0. At the wall (𝑦  =

 0) , the sheet is stretched in the x-direction with velocity 𝑢𝑤 = 𝐴0 𝑒
𝑥

𝑙 , accompanied by a 
suction/injection velocity, a prescribed heat-flux (PHF) condition, and a prescribed mass-flux 

(PMF) condition. A variable transverse magnetic field 𝐵 = 𝐵0𝑒
𝑥

2𝑙 is applied along the y-axis. The 
fluid motion arises from the opposing action of two parallel forces. The wall temperature and 

ambient temperature are denoted by  𝑇𝑤 and 𝑇∞, respectively, while 𝐶𝑤  and 𝐶∞ represent the 
nanoparticle concentration at the wall and in the ambient fluid. 
 

 
 
Figure 2. Sketch of physical problem 
 
The fundamental boundary layer equations are described as [49], [50]: 
 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, 

(1) 
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=
1

𝜌

𝜕

𝜕𝑦
(𝜇(1 − 𝑛)(

𝜕𝑢

𝜕𝑦
) +

𝜇Γ𝑛

√2
(
𝜕𝑢

𝜕𝑦
)2) −

𝜎𝐵0
2

𝜌
𝑢, 

 

(2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=
𝜌𝑝𝑐𝑝

𝜌𝑐
[𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+
𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑦
)2] + 𝛼

𝜕2𝑇

𝜕𝑦2
, 

 

(3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+
𝐷𝑇
𝑇∞

𝜕2𝑇

𝜕𝑦2
, 

(4) 
 
 

We assume that the boundary conditions are the following [49], [50]: 
 

𝑢 = 𝑢𝑤 = 𝐴0𝑒
𝑥

𝑙 , 𝑣 = 𝑣𝑤 = −𝛾(𝑥) = −𝑉0𝑒
𝑥

2𝑙,

       𝑃𝐻𝐹: − k (
𝜕𝑇

𝜕𝑦
)
w
 =  (𝑇𝑤 − 𝑇∞)𝑒

𝑥

2𝑙,   

𝑃𝑀𝐹: − 𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)
w
=  (𝐶𝑤 − 𝐶∞)𝑒

𝑥

2𝑙   𝑤ℎ𝑒𝑛 𝑦 = 0,
}
 
 

 
 

                                                         (5)    

 

   𝑢 = 0,    𝑇 → 𝑇∞,    𝐶 → 𝐶∞,    𝑎𝑡    𝑦 → ∞                                                                     (6) 
 

Where 𝑢 and 𝑣 are the velocity components in 𝑥 − and 𝑦 − directions respectively. Then 𝑢𝑤 is 

velocity at the wall, 𝑣𝑤 represents the velocity of suction/injection, 𝜎 is the fluid conductivity, 𝐵0 

for magnetic field strength, 𝑇 for temperature, 𝑐𝑝 is the specific heat at constant pressure, 𝜈 =
µ 

𝜌 
 

is the kinematic viscosity,  𝜌 is the fluid density, 𝜇 is the coefficient of fluid viscosity, 𝐴0 denotes 

the rate of stretching surface, 𝜌𝑝𝑐𝑝  for heat capacity of nanoparticles, 𝜌 𝑐  for heat capacity of 

nanofluid,  𝑛 is power law index, Γ is positive time constant, 𝐷𝐵 is Brownian diffusion coefficient,  

𝐷𝑇 is Thermophoresis diffusion coefficient, k is thermal conductivity, α is thermal diffusivity. 
 
2.2 Dimensionless analysis 
 
We introduce the following dimensionless variables:  
 

𝑢 = 𝑈0𝑒
𝑥

𝑙𝑓′(𝜂), 𝑣 = −√
𝑈0𝜈

2𝑙
𝑒
𝑥

2𝑙(𝑓(𝜂) + 𝜂𝑓′(𝜂)),

       𝜂 = √
𝑈0

2𝜈𝑙
𝑦𝑒

𝑥

2𝑙, PHF CASE: 𝑇 = 𝑇∞ +
(𝑇𝑤−𝑇∞)

𝑘
𝑒
𝑥

2𝑙√
2𝜈𝑙

𝑈0
𝜃(𝜂),

 PMF CASE:  𝐶 = 𝐶∞ +
(𝐶𝑤−𝐶∞)

𝐷𝐵
𝑒
𝑥

2𝑙√
2𝜈𝑙

𝑈0
𝑔(𝜂),

}
  
 

  
 

                              (7) 

 

The viscosity will change with temperature as 𝜇 = 𝜇0𝑒
−𝛽1𝜃(𝜂), where 𝜇0  is the coefficient of 

viscosity at the temperature 𝑇𝑤  and 𝛽1  is variable viscosity parameter. In general 𝛽1 > 0  for 

liquids, 𝛽1 < 0 for gases and  𝛽1 = 0 for constant viscosity. 
 
The governing equation reduces to  
 

[(1 − 𝑛) + 𝑛𝑊𝑒𝑓′′]𝑓′′′ + [
1

2
𝑛𝑓′′ − (1 − 𝑛)𝜈2]𝛽1𝜃

′𝑓′′ + 𝑒𝛽1𝜃[𝑓𝑓′′ − 2(𝑓′)2 −𝑀𝑓′] = 0,                         (8) 

 

𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃 + 𝑁𝑏  𝑔′𝜃′ +𝑁𝑡  𝜃′2) = 0 ,                                                            (9) 
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 𝑔′′ + 𝑆𝑐(𝑓𝑔′ − 𝑓′𝑔) +
𝑁𝑡

𝑆𝑐  𝑁𝑏
𝜃′′ = 0,                                                                              (10)  

 
The transformed boundary conditions are then given by:  
 

 𝑓(0) = −𝑆,    𝑓′(0) = 1,    𝜃′(0) = −1,    𝑔′(𝜂 = 0) = −1,

  𝑓′(∞) → 0,    𝜃(∞) → 0,    𝑔(∞) → 0.                                       
}                                    (11)  

 

Where, 𝑊𝑒 = Γ√
𝑈0
3𝑒

3𝑥
𝑙

𝜈𝑙
, 𝑀 =

2𝑙𝜎𝐵2

𝜌𝑈0
, 𝑆 = 𝑉0√

2𝑙

𝜈𝑈0
,   𝑆𝑐 =

𝜈

𝐷𝐵
,

  𝑁𝑏 =
𝜌𝑏𝑐𝑏

𝜌𝑐

𝐶𝑤−𝐶∞

𝜈
𝐷𝐵, 𝑁𝑡 =

𝜌𝑏𝑐𝑏

𝜌𝑐

𝐷𝑇(𝑇𝑤−𝑇∞)

𝑘𝑇∞
𝑒
𝑥

2𝑙√
2𝑙

𝜈𝑈0
,    𝑃𝑟 =

𝜈

𝛼
,
}
 
 

 
 

                             (12) 

 

The physical quantities of interest are the skin friction coefficient 𝐶𝑓𝑥, Nusselt number 𝑁𝑢𝑥 and 

Sherwood number 𝑆ℎ𝑢𝑥 are defined as: 

 

𝐶𝑓𝑥 = (
𝜏𝑤

𝜌𝑈𝑤
2 )𝑦=0,                                                                                                                    (13) 

 

𝑁𝑢𝑥 = (
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
)𝑦=0,                                                                                                                (14) 

 

𝑆ℎ𝑢𝑥 = (
𝑥𝑗𝑤

𝐷𝐵(𝐶𝑤−𝐶∞)
)𝑦=0,                                                                                           (15) 

 

Where, 𝜏𝑤 denotes the shear stress, 𝑞𝑤 stands for the heat flux, and 𝑗𝑤 represent mass flux and 
these quantities are defined as [51], [52]: 
 

𝜏𝑤 = (1 − 𝑛)𝑢𝑦 +
𝑛Γ

√2
(𝑢𝑦)

2,                                                                                              (16) 

 

𝑞𝑤 = −𝑘(
𝜕𝑇

𝜕𝑦
)𝑦=0,                                                                                                                 (17) 

 

𝑗𝑤 = −𝐷𝐵(
𝜕𝐶

𝜕𝑦
)𝑦=0,                                                                                                               (18) 

 

Dimensionless forms of 𝐶𝑓𝑥 , 𝑁𝑢𝑥 and 𝑆ℎ𝑢𝑥 are:   

 

−𝐶𝑓𝑥√𝑅𝑒𝑥 = ((1 − 𝑛)𝑓
′′(0) +

𝑛

2
𝑊𝑒𝑓′′2(0)),                                                              (19) 

 

𝑃𝐻𝐹:
𝑁𝑢𝑥

√𝑅𝑒𝑥
=

1

𝜃(0)
,                                                                                                                 (20) 

 

𝑃𝑀𝐹:
𝑆ℎ𝑢𝑥

√𝑅𝑒𝑥
=

1

𝑔(0)
,                                                                                                                (21) 

 

Where, 𝑅𝑒𝑥 =
𝑈𝑤𝑙

𝜈
 is the local Reynold number. 
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2.3 Numerical method for solution 
 

The domain of the system of governing Eqs. (8) to (11) is 0 ≤ 𝜂 ≤ 𝜂∞, where 𝜂∞ represents the 
limit of computation that user has specified. The algebraic mapping can be used [53]: 
 

𝜒 = 2
𝜂

𝜂∞
− 1,                                                                                                                         (22) 

 

A mapping from the unbounded region [0,∞) to restricted domain [1, −1], and we can transform 
the problem stated by equations Eqs. (8) to (11) for the system:    
 

[(1 − 𝑛) + 𝑛𝑊𝑒𝑓′′(𝜒)]𝑓′′′(𝜒) + [
1

2
𝑛𝑓′′(𝜒) − (1 − 𝑛)𝜈2]𝛽1𝜃

′(𝜒)𝑓′′(𝜒) +

𝑒𝛽1𝜃(𝜒)[𝑓(𝜒)𝑓′′(𝜒) − 2(𝑓′(𝜒))2 −𝑀𝑓′(𝜒)] = 0,                                                          (23) 
 

𝜃′′(𝜒) + 𝑃𝑟(𝑓(𝜒)𝜃′(𝜒) − 𝑓′(𝜒)𝜃(𝜒) + 𝑁𝑏  𝑔′(𝜒)𝜃′(𝜒) + 𝑁𝑡  𝜃′2(𝜒)) = 0,          (24) 
 

𝑔′′(𝜒) + 𝑆𝑐(𝑓(𝜒)𝑔′(𝜒) − 𝑓′(𝜒)𝑔(𝜒)) +
𝑁𝑡

𝑆𝑐  𝑁𝑏
𝜃′′(𝜒) = 0,                                        (25) 

 
The following gives transformed boundary conditions:  
 
 𝑓(𝜒 = −1) = −𝑆,   𝑓′(𝜒 = −1) = 1, 𝜃′(𝜒 = −1) = −1, 𝑔′(𝜒 = −1) = −1  

 𝑓′(𝜒 = 1) = 0, 𝜃(𝜒 = 1) = 0, 𝑔(𝜒 = 1) = 0,                                                          
}              (26) 

 

Our method works by starts with a Chebyshev approaching for largest derivatives, 𝑓′′′, ℎ′′ and 

𝜃′′. From there, we generate approximate the smaller order derivatives 𝑓′′, 𝑓′, 𝑓, ℎ′, ℎ, 𝜃′ and 

𝜃, in the following ways: 
 

If we assume that 𝑓′′′ = 𝜙(𝜒), ℎ′′ = 𝜓(𝜒) and 𝜃′′ = 𝜁(𝜒), then the following may be obtained 
using integration:  
 

𝑓′′(𝜒) = ∫
𝜒

−1
𝜙(𝜒)𝑑𝜒 + 𝐶1

𝑓
,                                                                                                (27) 

 

𝑓′(𝜒) = ∫
𝜒

−1 ∫
𝜒

−1
𝜙(𝜒)𝑑𝜒𝑑𝜒 + 𝐶1

𝑓(𝜒 + 1) + 𝐶2
𝑓,                                                            (28) 

 

 𝑓(𝜒) = ∫
𝜒

−1 ∫
𝜒

−1 ∫
𝜒

−1
𝜙(𝜒)𝑑𝜒𝑑𝜒𝑑𝜒 + 𝐶1

𝑓 (𝜒+1)2

2
+ 𝐶2

𝑓(𝜒 + 1) + 𝐶3
𝑓,                          (29) 

 

 𝜃′(𝜒) = ∫
𝜒

−1
𝜁(𝜒)𝑑𝜒 + 𝐶1

𝜃,                                                                                            (30) 

 

 𝜃(𝜒) = ∫
𝜒

−1 ∫
𝜒

−1
𝜁(𝜒)𝑑𝜒𝑑𝜒 + 𝐶1

𝜃(𝜒 + 1) + 𝐶2
𝜃,                                                             (31) 

 

 𝑔′(𝜒) = ∫
𝜒

−1
𝜓(𝜒)𝑑𝜒 + 𝐶1

𝑔,                                                                                              (32)  

 

 𝑔(𝜒) = ∫
𝜒

−1 ∫
𝜒

−1
𝜓(𝜒)𝑑𝜒𝑑𝜒 + 𝐶1

𝑔(𝜒 + 1) + 𝐶2
𝑔

,                                                           (33) 

 
Using a boundary condition (26), we get:  
 

𝐶1
𝑓 = −

1

2
∫
1

−1 ∫
𝜒

−1
𝜙(𝜒)𝑑𝜒𝑑𝜒 −

𝜂∞

4
, 𝐶2

𝑓 =
𝜂∞

2
, 𝐶3

𝑓 = −𝑆,                                            (34) 
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 𝐶1
𝜃 = −

𝜂∞

2
, 𝐶2

𝜃 = 𝜂∞ − ∫
1

−1 ∫
𝜒

−1
𝜁(𝜒)𝑑𝜒𝑑𝜒,                                                                  (35) 

 

 𝐶1
𝑔 = −

1

2
−
1

2
∫
1

−1 ∫
𝜒

−1
𝜓(𝜒)𝑑𝜒𝑑𝜒, 𝐶2

𝑔 = 1.                                                                     (36) 

 
As a result, the following are approximations for Eqs. (27) to (33) as follows:  
 

𝑓𝑖(𝜒) = ∑
𝑛
𝑗=0 𝑙𝑖𝑗

𝑓
𝜙𝑗 + 𝑑𝑖

𝑓
,    𝑓𝑖

′(𝜒) = ∑𝑛𝑗=0 𝑙𝑖𝑗
𝑓1
𝜙𝑗 + 𝑑𝑖

𝑓1
,    𝑓𝑖

′′(𝜒) = ∑𝑛𝑗=0 𝑙𝑖𝑗
𝑓2
𝜙𝑗 + 𝑑𝑖

𝑓2
,                      (37) 

 

𝜃𝑖(𝜒) = ∑𝑛𝑗=0 𝑙𝑖𝑗
𝜃 𝜁𝑗 + 𝑑𝑖

𝜃,    𝜃𝑖
′(𝜒) = ∑𝑛𝑗=0 𝑙𝑖𝑗

𝜃1𝜁𝑗 + 𝑑𝑖
𝜃1,                                                 (38) 

  

𝑔𝑖(𝜒) = ∑𝑛𝑗=0 𝑙𝑖𝑗
𝑔𝜓𝑗 + 𝑑𝑖

𝑔,    𝑔𝑖
′(𝜒) = ∑𝑛𝑗=0 𝑙𝑖𝑗

𝑔1𝜓𝑗 + 𝑑𝑖
𝑔1,                                              (39) 

for all 𝑖 = 0(1)𝑛, where  
 

𝑙𝑖𝑗
𝑓 = 𝑏𝑖𝑗

3 −
(𝜒+1)2

4
𝑏𝑛𝑗
2 ,           𝑑𝑖

𝑓 = −
(𝜒𝑖+1)

2

8
𝜂∞ +

(𝜒𝑖+1)

2
𝜂∞ − 𝑆,                                  (40) 

 

𝑙𝑖𝑗
𝑓1
= 𝑏𝑖𝑗

2 −
(𝜒+1)

2
𝑏𝑛𝑗
2 ,          𝑑𝑖

𝑓1
= −

(𝜒𝑖+1)

4
𝜂∞ +

𝜂∞

2
,                                                       (41) 

 

𝑙𝑖𝑗
𝑓2 = 𝑏𝑖𝑗 −

1

2
𝑏𝑛𝑗
2 ,                 𝑑𝑖

𝑓2 = −
𝜂∞

4
,                                                                            (42) 

 

𝑙𝑖𝑗
𝜃 = 𝑏𝑖𝑗

2 − 𝑏𝑛𝑗
2 ,                    𝑑𝑖

𝜃 = 𝜂∞ −
(𝜒𝑖+1)

2
𝜂∞,                                                             (43) 

 

𝑙𝑖𝑗
𝜃1 = 𝑏𝑖𝑗

2 ,                              𝑑𝑖
𝜃 = −

𝜂∞

2
,                                                                               (44) 

 

𝑙𝑖𝑗
𝑔 = 𝑏𝑖𝑗

2 −
(𝜒𝑖+1)

2
𝑏𝑛𝑗
2 ,         𝑑𝑖

𝑔 = −
(𝜒𝑖+1)

2
+ 1,                                                                  (45) 

 

𝑙𝑖𝑗
𝑔1 = 𝑏𝑖𝑗

2 −
1

2
𝑏𝑛𝑗
2 ,                𝑑𝑖

𝑔1 = −
1

2
,                                                                                (46) 

 

where 𝜒𝑖 = −𝑐𝑜𝑠(
𝑖𝜋

𝑛
) are the Chebyshev points.  

 

 𝑏𝑖𝑗
2 = (𝜒𝑖 − 𝜒𝑗)𝑏𝑖𝑗 ,  

 

𝑏𝑖𝑗 are the elements of the matrix 𝐵, as stated in [54]. Eqs. (8) to (11) for the corresponding system 

of nonlinear equations in the largest derivatives can be transformed into the following Chebyshev 
spectral by utilizing Eqs.  (37) to (46): 
 

[(1 − 𝑛) + 𝑛𝑊𝑒(∑𝑛𝑗=0 𝑙𝑖𝑗
𝑓2
𝜙𝑗 + 𝑑𝑖

𝑓2
)]𝜙𝑖 + [

1

2
𝑛(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓2
𝜙𝑗 + 𝑑𝑖

𝑓2
) − (1 − 𝑛)𝜈2]𝛽1(∑

𝑛
𝑗=0 𝑙𝑖𝑗

𝜃1𝜁𝑗 +

𝑑𝑖
𝜃1)(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓2
𝜙𝑗 + 𝑑𝑖

𝑓2
) + 𝑒𝛽1(

∑𝑛𝑗=0 𝑙𝑖𝑗
𝜃 𝜁𝑗+𝑑𝑖

𝜃)[(∑𝑛𝑗=0 𝑙𝑖𝑗
𝑓
𝜙𝑗 + 𝑑𝑖

𝑓
)(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓2
𝜙𝑗 + 𝑑𝑖

𝑓2
) − 2(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓1
𝜙𝑗 +

𝑑𝑖
𝑓1
)2 −𝑀(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓1
𝜙𝑗 + 𝑑𝑖

𝑓1
)] = 0,                   (47) 

                                               

(∑𝑛𝑗=0 𝑙𝑖𝑗
𝜃2𝜁𝑗 + 𝑑𝑖

𝜃2)+Pr((_∑𝑛𝑗=0 𝑙𝑖𝑗
𝑓
𝜙𝑗 + 𝑑𝑖

𝑓
)(_∑𝑛𝑗=0 𝑙𝑖𝑗

𝜃1𝜁𝑗 + 𝑑𝑖
𝜃1)−(_ ∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓1
𝜙𝑗 + 𝑑𝑖

𝑓1
)(_∑𝑛𝑗=0 𝑙𝑖𝑗

𝜃 𝜁𝑗 +

𝑑𝑖
𝜃)+𝑁𝑏(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑔1
𝜓𝑗 + 𝑑𝑖

𝑔1
)(∑𝑛𝑗=0 𝑙𝑖𝑗

𝜃1𝜁𝑗 + 𝑑𝑖
𝜃1) + 𝑁𝑡(∑𝑛𝑗=0 𝑙𝑖𝑗

𝜃1𝜁𝑗 + 𝑑𝑖
𝜃1)2) = 0,                                     (48)                                                                       

 

(∑𝑛𝑗=0 𝑙𝑖𝑗
𝑔2
𝜓𝑗 + 𝑑𝑖

𝑔2
) + 𝑆𝑐((∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓
𝜙𝑗 + 𝑑𝑖

𝑓
)(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑔1
𝜓𝑗 + 𝑑𝑖

𝑔1
) − (∑𝑛𝑗=0 𝑙𝑖𝑗

𝑓1
𝜙𝑗 + 𝑑𝑖

𝑓1
)(∑𝑛𝑗=0 𝑙𝑖𝑗

𝑔
𝜓𝑗 +

𝑑𝑖
𝑔
)) +

𝑁𝑡

𝑆𝑐  𝑁𝑏
(∑𝑛𝑗=0 𝑙𝑖𝑗

𝜃1𝜁𝑗 + 𝑑𝑖
𝜃1)2) = 0.                                       (49) 
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The computer program was run in MATHEMATICA to ensure accuracy and stability of the results 

on a PC, and by using Newton’s iteration approach with 𝑛 = 12, this system is solved. 
 
3. Results and discussion  
 
To validate the accuracy of the methodology, in Table 1 we compare the present results with the 

previous one that obtained by Akbar et al., [51] and Amjad et al., [11] considering  𝑊𝑒 = 𝑛 =

𝑆 = 𝛽1 = 0 for different values of M. These studies were selected because they investigate the 
same type of boundary layer flow and employ similar simplifying assumptions, allowing for a 
consistent and meaningful comparison. Akbar’s study examines the effects of a magnetic field on 
Eyring–Powell fluid flow over a linearly stretching sheet, while Amjad explores tangent hyperbolic 
nanofluid flow over an exponentially stretched sheet with prescribed exponential-order surface 
temperature (PEST) and heat flux (PEHF) conditions. However, both studies do not account for 
temperature-dependent viscosity, which limits their applicability in systems with significant thermal 
variation. Furthermore, Akbar assumes fixed thermal and concentration boundary conditions, 
while Amjad does not consider the combined effects of prescribed heat flux (PHF) and mass flux 
(PMF) boundary conditions. Our study improves upon these limitations by introducing an 
exponentially stretching sheet with temperature-dependent viscosity, along with PHF and PMF 
boundary conditions. This approach provides valuable insights for applications such as polymer 
extrusion and high-temperature cooling systems. Our results demonstrate a strong agreement with 
those of previous studies, validating the accuracy and robustness of our approach. 
 

Table 1. Results comparison of 𝑓′′(0) for various values of 𝑀 when 𝑊𝑒 = 𝑛 = 𝑆 = 𝛽1 = 0 
 

 

Tables 2-3 shows the impacts on 
𝑁𝑢𝑥

√𝑅𝑒𝑥
, 
𝑆ℎ𝑥

√𝑅𝑒𝑥
 for several physical parameters. As Weissenberg 

number 𝑊𝑒 rises the value of the local Nusslet and Sherwood numbers are reduced. Due to the 

Lorentz effect, that causes fluid motion to slow, by raising the Magnetic field parameter 𝑀, the 

local Nusslet and Sherwood numbers are reduced. As Power law index 𝑛 enhances the Nusslet 
number and Sherwood number are decreased. The local Nusslet number and Sherwood number 

are reduced when the Suction and injection parameter 𝑆 increases because the stretched surface 

causes resistivity on fluid flow. When the variable viscosity parameter 𝛽1 goes up, it indicated that 

𝑁𝑢𝑥  and 𝑆ℎ𝑥 increase their values. The local Nusslet number is enhanced as 𝑃𝑟 raises, but 𝑆ℎ𝑥 

falls in its values. The local Sherwood number( 𝑆ℎ𝑥 ) rises while 𝑁𝑢𝑥  decreases as Brownian 

motion 𝑁𝑏 grows. Upon increasing 𝑁𝑡, the Nusslet and Sherwood numbers had fallen in their 

values. Sherwood and Nusslet local numbers are also an increasing function in 𝑆𝑐. 
 
 
 
 
 

𝑴 Akbar et al. [51] Amjad et al. [11] Present study 

0.0 -1.00000 -1.00000 -0.96604 
0.5 -1.11803 -1.11803 -1.10997 
1.0 -1.41421 -1.41421 -1.41341 
5.0   -2.449449 -2.449489 -2.49567 
10 -3.31663 -3.316624 -3.40825 
100 -10.0498 -10.04987 -10.05985 
500 -22.38303 -22.38303 -23.59678 
1000 -31.63859 -31.63858 -31.67193 
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Table 2.  Values of 
𝑁𝑢𝑥

√𝑅𝑒𝑥
 for different values of 𝑊𝑒, 𝑛, 𝑆, 𝑛,𝑀, 𝛽1, 𝑃𝑟, 𝑁𝑏,𝑁𝑡, and 𝑆𝑐 

 

𝑾𝒆 𝑺 𝒏 𝑴 𝜷𝟏 𝑷𝒓 𝑵𝒃 𝑵𝒕 𝑺𝒄 
𝑵𝒖𝒙

√𝑹𝒆𝒙
 

0.0 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.34028 
0.3 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.33192 
0.5 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.32538 
0.3 0.0 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.35329 
0.3 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.33192 
0.3 0.3 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.32362 
0.3 0.2 0.0 0.2 0.1 0.5 0.5 0.5 1.0 0.38112 
0.3 0.2 0.2 0.2 0.1 0.5 0.5 0.5 1.0 0.35128 
0.3 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.33192 
0.3 0.2 0.3 0.0 0.1 0.5 0.5 0.5 1.0 0.36589 
0.3 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.33192 
0.3 0.2 0.3 0.3 0.1 0.5 0.5 0.5 1.0 0.31813 
0.3 0.2 0.3 0.2 0.0 0.5 0.5 0.5 1.0 0.36227 
0.3 0.2 0.3 0.2 0.2 0.5 0.5 0.5 1.0 0.29366 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.5 1.0 0.23971 
0.3 0.2 0.3 0.2 0.3 0.1 0.5 0.5 1.0 0.16025 
0.3 0.2 0.3 0.2 0.3 0.2 0.5 0.5 1.0 0.20467 
0.3 0.2 0.3 0.2 0.3 0.3 0.5 0.5 1.0 0.25001 
0.3 0.2 0.3 0.2 0.3 0.5 0.1 0.5 1.0 0.37319 
0.3 0.2 0.3 0.2 0.3 0.5 0.2 0.5 1.0 0.36236 
0.3 0.2 0.3 0.2 0.3 0.5 0.3 0.5 1.0 0.35188 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.0 1.0 0.41241 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.3 1.0 0.36303 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.5 1.0 0.33192 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.5 0.1 0.15995 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.5 0.3 0.25538 
0.3 0.2 0.3 0.2 0.3 0.5 0.5 0.5 0.5 0.30018 

 
In this section, we conduct a numerical investigation using the Chebyshev spectral method to 
analyze the flow of tangent hyperbolic nanofluid (a non-Newtonian fluid) over an exponentially 
stretching surface, incorporating the combined effects of variable viscosity, magnetic field, and 
PHF/PMF boundary conditions. For velocity, temperature, and concentration profiles, the impacts 

of physical parameters has been investigated for the variable viscosity 𝛽1, power law index 𝑛, 
magnetic parameter M, suction/injection parameter S, Brownian motion parameter Nb, 

thermophoretic parameter 𝑁𝑡, and Schmidt number 𝑆𝑐. The system of ODEs obtained in the Eqs 
(8) to (11) are solved using Chebyshev Spectral Method to find the numerical solutions for 
transformed differential system. 
 
The ranges of all physical variables used in this study are [55]: 
 

𝑂(𝛽1)~ 0 → 0.4 , 𝑂(n)~ 0.1 → 0.5 , 𝑂(𝑀)~ 0.1 → 0.5 , 𝑂(𝑆)~ − 0.4 → 0.4 , 

𝑂(𝑊𝑒)~ 0 → 0.5 , 𝑂(𝑁𝑡)~ 0 → 0.6 ,  𝑂(𝑁𝑏)~ 0.1 → 1 ,  𝑂(𝑃𝑟)~ 0.1 → 2 ,  

𝑂(𝑆𝑐)~ 0.1 → 1.6. 
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Table 3.  Values of 
𝑆ℎ𝑥

√𝑅𝑒𝑥
 for different values of 𝑊𝑒, 𝑛, 𝑆, 𝑛,𝑀, 𝛽1, 𝑃𝑟, 𝑁𝑏,𝑁𝑡, and 𝑆𝑐 

 

𝑾𝒆 𝑺 𝒏 𝑴 𝜷𝟏 𝑷𝒓 𝑵𝒃 𝑵𝒕 𝑺𝒄 
𝑺𝒉𝒙

√𝑹𝒆𝒙
 

0.0 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.49560 
0.3 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.48707 
0.5 0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.48049 
0.3  0.0 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.52138 
0.3  0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.48707 
0.3  0.3 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.47148 
0.3  0.2 0.0 0.2 0.1 0.5 0.5 0.5 1.0 0.54066 
0.3  0.2 0.2 0.2 0.1 0.5 0.5 0.5 1.0 0.50750 
0.3  0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.48707 
0.3  0.2 0.3 0.0 0.1 0.5 0.5 0.5 1.0 0.52228 
0.3  0.2 0.3 0.2 0.1 0.5 0.5 0.5 1.0 0.48707 
0.3  0.2 0.3 0.3 0.1 0.5 0.5 0.5 1.0 0.47321 
0.3  0.2 0.3 0.2 0.0 0.5 0.5 0.5 1.0 0.51932 
0.3  0.2 0.3 0.2 0.2 0.5 0.5 0.5 1.0 0.44906 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.5 1.0 0.40138 
0.3  0.2 0.3 0.2 0.3 0.1 0.5 0.5 1.0 0.57247 
0.3  0.2 0.3 0.2 0.3 0.2 0.5 0.5 1.0 0.53017 
0.3  0.2 0.3 0.2 0.3 0.3 0.5 0.5 1.0 0.57077 
0.3  0.2 0.3 0.2 0.3 0.5 0.1 0.5 1.0 0.20041 
0.3  0.2 0.3 0.2 0.3 0.5 0.2 0.5 1.0 0.31734 
0.3  0.2 0.3 0.2 0.3 0.5 0.3 0.5 1.0 0.39375 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.0 1.0 0.74695 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.3 1.0 0.56122 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.5 1.0 0.48707 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.5 0.1 0.05984 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.5 0.3 0.12701 
0.3  0.2 0.3 0.2 0.3 0.5 0.5 0.5 0.5 0.22330 

 
3.1 Velocity distribution 
 

Figure 3 (a-d) displays the impact of velocity profile versus 𝜂 which is dependent on 𝛽1, 𝑀, 𝑆, and 

n. The effects of 𝛽1 on the velocity 𝑓′(𝜂)  are depicted in Figure 3(a). As 𝛽1  increases, the 
boundary-layer thickness diminishes and the overall velocity profile decreases a result of larger 

temperature gradients between the surface and the ambient fluid. Moreover, for 𝛽1 >  0  the 

velocity near the wall flattens more rapidly than in the Newtonian case (𝛽1 =  0), indicating that 
the non-Newtonian tangent hyperbolic behavior further reduces flow resistance. The effect of 

power law index n on 𝑓′(𝜂) is shown graphically in Figure 3(b). It is obvious that when n grows, 
the velocity profile falls. From a physical standpoint, its influence on the fluid's rheological 
characteristics is what is responsible for the drop in velocity distribution linked to a raised power 
law index parameter. Physically, the fluid's reaction to shear stresses is primarily responsible for 
the decrease in nanofluid velocity linked to the power law index. Fluid velocity decreases when the 
power law index rises, indicating increased resistance to shear. It is depicted in Figure 3(c) that a 

reduction in the velocity profile as the value of the magnetic parameter M rises according to the 
retarding force causes. In a physical sense, as the magnetic parameter rises, so does the Lorentz 
force applied to the fluid. As a result, the fluid moves more slowly as a result of the decreased fluid 

velocity. The effect of the Suction and injection parameter 𝑆 is depicted in Figure 3(d), where the 
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velocity profile grows with increasing for injection/suction parameter. Physically, while the 
velocity profile grows with increased suction, it reduces with increased injection. The reason for 
this is that when the fluid is injected into the system close to the surface, it takes up space next to 
the wall, increasing the momentum boundary thickness. In a suction case the fluid in the 
surrounding area of the surface moves out, which complicates the formation of the boundary layer. 
Consequently, the immediate effects of the injection and suction is that they change and decrease 
the boundary layer thickness for the velocity profile. 
 

  
 

(a) (b) 

  

(c) (d) 
 

Figure 3. Velocity profiles 𝑓′(𝜂) versus 𝜂 for various values of (a) 𝛽1 (b) 𝑛  (c) 𝑀 (d) 𝑆    
 
3.2 Temperature distribution  
 

The influence of 𝛽1 on temperature verses 𝜂 is shown in Figure 4(a). It has been noticed that an 

rises in the fluid viscosity parameter 𝛽1  tends to in an increase in the thermal boundary layer 

thickness. As a result, 𝜃(𝜂) values rise. Consequently, a rise in 𝛽1 raises the fluid temperature. 
The temperature variation for a power law index n is displayed in Figure 4(b), where the 

temperature is increased. Physically, a rise in n causes a rise in viscosity.  As a result of a surge in 
viscosity, the fluid temperature rises. Figures 4(c) - 4(d) presents the impact of magnetic parameter 

𝑀 and Suction/Injection parameter 𝑆 on 𝜃(𝜂). These figures conclude that temperature grow for 

larger values of 𝑀, 𝑆. Physically, the idea is that when the magnetic parameter increases, Lorentz 
force is created and friction is created on the flow. Friction increases the amount of heat energy 
produced, which in turn raises the temperature profile in the flow.  Figures 4(e) - 4(f) are depicted 

to interpret the temperature (𝜃(𝜂)) profile for different values of 𝑁𝑡,𝑁𝑏. The Figures 4(e) - 4(f) 

display the variation of 𝑁𝑡 and 𝑁𝑏 for (𝜃(𝜂)). Both the temperature and corresponding layer 

thickness exhibit similar behavior. For larger 𝑁𝑡, fluid particles rise from the system’s hot to cold 
regions. It results from a rise in the thermophoresis force, which raises the temperature profile 

(refer to Figure 4(e)). As 𝑁𝑏 is estimated higher, the temperature rises due to enhanced random 
motion of the liquid particles. 
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(a) 

 
 

(b) 
 

 
 

(c) 

 

 
 

(d) 
 

 
 

(e) 

 

 
 

(f) 
 

Figure 4. Temperature profiles (𝜃(𝜂)) versus 𝜂 for different values of (a) 𝛽1 (b) 𝑛  (c) 𝑀  (d) 

𝑆  (e) 𝑁𝑡  (f) 𝑁𝑏 
 
3.3 Concentration distribution 
 

The impact of 𝛽1, 𝑛, 𝑆, and 𝑁𝑡 on 𝑔(𝜂) is depicted in Figure 5(a-d), concentration profiles grow 

for larger values of 𝛽1, 𝑛, 𝑆 and additionally, an raise in the thermophoretic parameters Nt was 
shown to enhance the concentration levels. As a result of the nanoparticles resistance to the heated 
surface during the thermophoresis process, they scatter from the warm surface into the surrounding 
fluid. In this manner the thermophoretic force is responsible for the transfer of heat from the surface 
to the flowing fluid through nanoparticles. The concentration boundary layer gets thicker. The 

behavior of Nb on 𝑔(𝜂) is depicted in Figure 5(e). A reduction in the concentration of nanofluid 
results from raising Nb due to Brownian motion pushes the particles outside of the fluid system as 
the boundary layer warms. As a result, as particle size decreases, nanoparticle mobility increases 

and thermal conduction is improved as 𝑁𝑏 increases. The main component of a nanofluid is a two-
phase system where the kinetic energy is increased by the arbitrary motion of the nanoparticles. 
However, Brownian motion has a significant impact on the diffusion of nanoparticles. When 
Brownian motion is present, the concentration boundary layer's thickness decreases. Figure 5(f) 
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shows that the variation of 𝑆𝑐 on 𝑔(𝜂). There is a diminishing effect as Sc’s value increases. As 𝑆𝑐 
rises, the concentration boundary layer thickness reduces because of a decrease in mass diffusivity. 
 

 
 

(a) 

 
 

(b) 
 

 
 

(c) 

 
 

(d) 
 

 
 

(e) 

 
 

(f) 
 

Figure 5. Concentration profiles (𝑔(𝜂)) versus 𝜂 for various values of (a) 𝛽1 (b) 𝑛  (c) 𝑆 (d) 

𝑁𝑡 and (e) 𝑁𝑏  (f) 𝑆𝑐 
 
3.4 Skin friction distribution 
 
Figure 6(a) demonstrates the increase in the skin friction coefficient with higher Weissenberg 
numbers (We). As We grows, the fluid's elasticity weakens its resistance to shear, which results in 
reduced skin friction and a thinner boundary layer.  In Figure 6(b) shows the impact of different 

suction and injection parameter values 𝑆 on the 𝐶𝑓√𝑅𝑒𝑥.  It appears that enhancing the suction 
and injection parameters allows for better control of the flow near the surface, which reduces 
friction and boosts overall efficiency in various engineering applications. This can result in energy 
savings, improved performance, and greater system durability. Figure 6(c) illustrates the impact of 

the power law index 𝑛  on 𝐶𝑓√𝑅𝑒𝑥. It shows that as 𝑛 rises, 𝐶𝑓√𝑅𝑒𝑥 reduces. Figures 6(d) and 

6(e) depict the impression of the growing magnetic field parameter 𝑀 and variable viscosity 𝛽1 on 

𝐶𝑓√𝑅𝑒𝑥.   Figure 6(a) illustrates how the skin friction coefficient rises with stronger magnetic field 
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parameters. This is due to the magnetic field generating resistive forces (Lorentz forces) in the fluid, 
which thickens the boundary layer and restricts the flow. In engineering applications, this leads to 
higher energy consumption or the need for more powerful equipment to overcome the added 
resistance. Designers must consider these factors when applying magnetic fields for flow control. 

Figure 6(e) depicts the rise in the skin friction coefficient with an increase in 𝛽1. Physically, when 
the viscosity of a fluid increases, it leads to greater resistance to flow near the surface, causing the 
boundary layer to thicken and the shear stress to increase. This results in a higher skin friction 
coefficient. In engineering applications, this means higher energy usage, increased wear on 
equipment, and potentially lower efficiency in systems that depend on fluid flow. Designers must 
consider variable viscosity in areas such as lubrication, fluid transport, heat exchangers, and 
aerodynamics to optimize performance and reduce energy costs. 
 

 
(a) 

 

 
 (b) 

 

 
 

(c) 

 
 

(d) 
 

 
 

(e) 
 

Figure 6.  Bar chart representation of skin friction profile −𝐶𝑓√𝑅𝑒𝑥 for different parameters 

(a)We (b) 𝑆  (c) 𝑛 (d) 𝑀  (e)𝛽1 with 𝑃𝑟 = 𝑁𝑏 = 0.5, and 𝑆𝑐 = 1 
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3.5 Limitations of current work 
 
Our study acknowledges several limitations that could influence the generalizability and accuracy 
of the results. The mathematical model employed in our work simplifies real-world complexities, 
potentially omitting certain critical factors that may influence the behavior of the system. 
Additionally, the assumptions made regarding the boundary conditions may not encompass all 
possible physical scenarios, which could limit the applicability of our conclusions. While the 
Chebyshev Spectral Method has proven to be effective in our analysis, it does have certain 
limitations, particularly under specific conditions that could affect the accuracy of the results. 
Moreover, the sensitivity of the results to the selected parameter values in the simulations suggests 
that variations in these parameters could impact the findings significantly. Finally, our study focuses 
on particular nanofluids and conditions, which may restrict the broader applicability of the findings 
to other materials or scenarios. To overcome these limitations, future research could consider more 
complex models that incorporate a broader range of real-world factors and boundary conditions. It 
would also be beneficial to test a wider variety of parameters and conditions to improve the 
robustness of the findings. Exploring alternative numerical methods and studying different 
nanofluids under diverse conditions would help broaden the scope and applicability of the results, 
leading to a deeper understanding of the underlying phenomena. 
 
4. Conclusion  
 
In this work analyzed Numerical solution of the variable fluid viscosity on MHD Non-Newtonian 
nanofluid of variable viscosity with prescribed exponential order heat and mass flux through an 
exponentially stretching surface. Using the proper similarity transformations, the governing 
equations of nonlinear PDEs is converted into the system of nonlinear ODEs. The transformed 
system of modelled equations was solved using Chebyshev spectral method. There was a strong 
agreement between our findings and those from previously published works. The flow and heat 
transfer details are highlighted by the numerical results are shown in tabular and graphical. These 
are the model’s most significant outcomes, listed in order of importance. 
 

• The Skin friction coefficient is larger for Newtonian fluid (𝑛 = 0) than Non-Newtonian 

(𝑛 ≠ 0). 
• The Nusslet and Sherwood numbers are less for nanofluid than clear fluid. 
• The rate of change of the velocity, temperature and concentration profiles have a term 

which directly proportional to viscosity ( 𝛽1 ≠ 0) than constant viscosity (𝛽1 = 0). 

• The velocity and temperature profile 𝜃(𝜂) will rises with the increase of Suction Injection 
parameter S. 

• The rising in the Schmidt number Sc causes an reduces in the concentration profile 𝑔(𝜂), 

while enhanced in the case of 𝛽1 ≠ 0, 𝑛 ≠ 0, 𝑆 ≠ 0, 𝑁𝑡 ≠ 0. 
• In the future, the suggested fluid flow model has to be applied to other physical 

environments. To obtain the maximum heat transfer rate, the application of several 
nanoparticles from the current study will be considered. As a result, the suggested model 
should therefore include contributions to the current industrial challenges. For comparison 
and reference reasons. 
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Nomenclature 
 

Symbol SI Unit Describtion 

𝐴0  Rate of stretching surface 

𝐵0 𝐴 𝑚−1 Magnetic field strength  

𝑐𝑝 𝐽/𝑘𝑔 𝐾 Specific heat  

𝑀 𝑇 Magnetic field vector 

𝑓  Dimensionless stream function  

𝑃𝑟  Prandtl number 

𝐶𝑤 𝑚𝑜𝑙𝑒 Concentration of nanoparticles at the surface  

𝐶∞ 𝑚𝑜𝑙𝑒 Ambient concentration of nanoparticles  

𝑈𝑤 𝑚𝑠−1 Velocity at the wall 

𝑆  Suction and injection parameter 

𝜃(𝜂)  Dimensionless temperature  

𝑔(𝜂)  Dimensionless concentration  

𝑁𝑡  Thermophoretic parameter  

𝑁𝑏  Brownian motion  

𝑇𝑤 𝐾 Temperature of Surface 

𝑇∞ 𝐾 Surrounding temperature 

𝑆𝑐  Schimdit number 
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𝐷𝐵 𝑚2𝑠−1 Brownian diffusion coefficient 

𝐷𝑇 𝑚2𝑠−1 Thermophoresis diffusion coefficient 

𝜌𝑐 𝐽𝑚−3𝐾−1 Heat capacity of nanfluid 

𝑅𝑒𝑥 𝐾𝑔 𝑚−3 Local Reynolds number 

𝑛  Power law index 

𝑓′  Dimensionless velocity  

𝜂  Similarity variable 

𝜎 𝑆𝑚−1 Electrical conductivity 

Γ  Positive time constant 

𝛼 𝑚2𝑠−1 Thermal diffusivity  

𝜌𝑐𝑝 𝐽𝑚−3𝐾−1 Heat capacity of nanoparticles 

𝜈 𝑚2𝑠−1 Kinematic viscosity  

𝜌 𝑘𝑔 𝑚−3 Density 

𝑊𝑒  Weissenberg number  

𝑤  Condition at the surface  

∞  Condition at the free stream  

(𝑢, 𝑣) m 𝑠−1 Velocity  Component 

(𝑥, 𝑦) m Coordinate  Axes 
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