The Effect of Tilt Angle of Axial Fan Blades on Air Flow Distribution in the Cabinet Dryer: Simulation Study Using Computational Fluid Dynamics

  • Agus Dian Saputra Department of Mechanical Engineering, Faculty of Engineering, Universitas Andalas, Padang 25175, Indonesia
  • Adjar Pratoto Department of Mechanical Engineering, Faculty of Engineering, Universitas Andalas, Padang 25175, Indonesia
  • Gusriwandi Gusriwandi Department of Mechanical Engineering, Faculty of Engineering, Universitas Andalas, Padang 25175, Indonesia
  • Joko Suprianto Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Padang 25131, Indonesia
Keywords: Axial Fan, CFD, Air Distribution, Simulation

Abstract

The application of tray dryer is widely used for various commodity dryers due to its simple construction. However, one of the drawbacks of tray dryer is the uneven airflow distribution in the drying chamber which results in the drying rate in the tray position being unequal. As a result, the degree of dryness of the product also varies. This study investigated the effect of fan blade angle on airflow distribution in the dryer cabin through numerical simulations. The axial fan diameter was 350 mm with a thickness of 20 mm. The variations of axial fan blades used were 10o, 20o, 30o and 45o. The number of blades used was 4, and the allowable airflow limit was 2 m x 1 m x 1 m, with an axial fan rotation of 500rpm. Based on the simulation results, the 45o fan angle had good air distribution results compared to the 10o, 20o, and 30o fan angles. Likewise, the distribution of air produced by the fan was evenly distributed, because the greater the angle of the fan used for the dryer, the better the results would be obtained.

References

M. Riswandi, Abdul Makhsud, “Unjuk kerja pengering kakao tipe tray dryer dengan mengalirkan udara panas secara zik-zak,” J. Tek. Mesin, no. 2.3, pp. 50–56, 2021.

R. Hasibuan, “Mekanisme peneringan,” pp. 1–8, 2004.

M. Taufik, “Pengaruh temperatur terhadap laju pengeringan jagung pada pengering konvensional dan fluidized bed,” Universitas Sebelas Maret, 2004.

R. I. M. Azridjal Aziz, Ahmad Surya, “Pengujian pengering tenaga surya tipe pada kondisi berbeda,” J. Sains dan Teknol. 18, vol. 18, no. September, pp. 82–90, 2019.

M. Martinello and S. Giner, “Simulation of natural air drying of maize in a typical location of argentina : influence of air heating through the fan,” Biosyst. Eng., vol. 107, no. 1, pp. 36–45, 2010, doi: 10.1016/j.biosystemseng.2010.06.010.

D. A. Wulandari et al., “Pengaruh sudut bilah pada performa kipas menggunakan metode komputasi,” J. Konversi Energi dan Manufaktur UNJ, vol. 46, no. April, pp. 77–82, 2014.

B. P. Vidiyanto, W. Aryadi, A. M. Khoiron, and S. Anis, “Pengaruh penggunaan fan dan debit fluida terhadap efisiensi kerja atmospheric water generator,” J. Rekayasa Mesin, vol. 10, no. 2, pp. 105–112, 2019, doi: 10.21776/ub.jrm.2019.010.02.1.

A. S. Tanjung, “Studi eksperimen pengaruh blade setting experimental study the effects of blade setting angle 30 ° and 60 ° with flat plate profile in working characteristic curve of axial fan 120mm,” Instutut Teknologi Sepuluh Nopomber, 2015.

F. Babich, M. Cook, D. Loveday, R. Rawal, and Y. Shukla, “Transient three-dimensional CFD modelling of ceiling fans,” Build. Environ., vol. 123, pp. 37–49, 2017, doi: 10.1016/j.buildenv.2017.06.039.

S. Hyun, M. Hun, Y. Kim, and M. Choi, “Effects of freestream on piezoelectric fan performance,” j. fluids struct., vol. 87, pp. 302–318, 2019, doi: 10.1016/j.jfluidstructs.2019.04.007.

Prasetiyadi, “Modifikasi putaran fan untuk meningkatkan efisiensi pemakaian listrik,” Tek. Lingkung., vol. 9–16, no. juli, 2006.

G. R. Supit, H. Luntungan, and B. Maluegha, “Simulasi numerik aliran fluida dalam penstock dengan menggunakan computational fluid dynamics (CFD),” J. online poros Tek. mesin, vol. 3, no. 10, pp. 77–88, 2014.

Gusriwandi, “Kajian cfd perbandingan kinerja tiga buah model runner turbin francis,” vol. 21, no. 2, pp. 77–84, 2014.

W. M. Versteeg, Henk Kaarle, An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.

D. C. Panigrahi and D. P. Mishra, “CFD simulations for the selection of an appropriate blade profile for improving energy efficiency in axial flow mine ventilation fans,” J. Sustain. Min., vol. 13, no. 1, pp. 15–21, 2014, doi: 10.7424/jsm140104.

L. Carlos, V. Guedes, and S. Filipe, “Science direct sciencedirect computational behavioral study study and and computational fluid fluid dynamics dynamics ( CFD ): ( CFD ): behavioral optimization of of the the blades blades number number of of a a radial radial fan fan optimization,” Procedia Manuf., vol. 38, no. Faim 2019, pp. 1324–1329, 2020, doi: 10.1016/j.promfg.2020.01.157.

Published
2021-05-24
How to Cite
Saputra, A., Pratoto, A., Gusriwandi, G., & Suprianto, J. (2021). The Effect of Tilt Angle of Axial Fan Blades on Air Flow Distribution in the Cabinet Dryer: Simulation Study Using Computational Fluid Dynamics. Teknomekanik, 4(1), 8-13. https://doi.org/10.24036/teknomekanik.v4i1.8772
Section
Research Articles