Design, simulation, and static testing of an eco-friendly prosthetic foot using ramie-PLA composite

Authors

  • Iyan Sopiyan Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
  • Tresna P. Soemardi Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
  • Herry Purnomo Aeronautics and Spaces Research Organization, National Research and Innovation Agency (BRIN), Indonesia
  • Olivier Polit Laboratoire Energétique Mécanique Electromagnétisme, Université Paris Nanterre, France

DOI:

https://doi.org/10.24036/teknomekanik.v8i1.36572

Keywords:

ramie fibers, PLA, bio-composite, lower limb prosthetic foot, prosthetic design and development

Abstract

This study developed a sustainable lower-limb prosthetic prototype using biodegradable ramie fiber-reinforced PLA composite as its primary material. The design specifically addresses the needs of individuals with limb amputation while prioritizing environmental sustainability. PLA-based composites for structural biomedical applications—particularly those in lower-limb prosthetics—must meet rigorous mechanical and fatigue performance requirements under repetitive loading. This study investigates the development of a transtibial prosthetic foot prototype using a quasi-isotropic lay-up prepreg ramie-PLA composite fabricated via the hot press method. Material characterization was conducted per ASTM standards, and the design was evaluated using the Finite Element Method (FEM). The prototype underwent static testing according to ISO 22675 with a user load criterion. The laminate exhibited an ultimate tensile strength of 48.36 ± 0.95 MPa, an elastic modulus of 4.125 ± 0.25 GPa, and a flexural strength of 62.06 ± 3.43 MPa. FEM results showed that all normal and shear stresses during heel strike (17.78 MPa and 1.71 MPa) and toe-off (12.38 MPa and 5.69 MPa) phases remained below fatigue limits. Experimental static stresses were heel strike (12.72 MPa) and toe-off (20.09 MPa), both within safe operational limits. These findings highlight the structural viability and environmental sustainability of ramie-PLA composites, positioning them as a promising material for next-generation prosthetic foot development.

Downloads

Download data is not yet available.

References

S.-C. Shi, S.-T. Cheng, and D. Rahmadiawan, “Developing biomimetic PVA/PAA hydrogels with cellulose nanocrystals inspired by tree frog structures for superior wearable sensor functionality,” Sens Actuators A Phys, vol. 379, p. 115981, Dec. 2024, https://doi.org/10.1016/j.sna.2024.115981

S.-C. Shi, S.-W. Ouyang, and D. Rahmadiawan, “Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging,” Polymers (Basel), vol. 16, no. 7, p. 960, Apr. 2024, https://doi.org/10.3390/polym16070960

M. Ibadi, H. Purnomo, D. N. Vicarneltor, H. B. Wibowo, M. H. Setianto, and Y. Whulanza, “Investigation of Thermomechanical Analysis of Carbon/Epoxy Composite for Spacecraft Structure Material,” Sains Malays, vol. 53, no. 3, pp. 691–704, Mar. 2024, https://doi.org/10.17576/jsm-2024-5303-16

L. Nolan, “Carbon fibre prostheses and running in amputees: A review,” Foot and Ankle Surgery, vol. 14, no. 3, pp. 125–129, Jan. 2008, https://doi.org/10.1016/j.fas.2008.05.007

Y. Lian et al., “Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors,” J Colloid Interface Sci, vol. 676, pp. 217–226, Dec. 2024, https://doi.org/10.1016/j.jcis.2024.07.102

T. P. Soemardi, O. Polit, F. Salsabila, and A. Lololau, “Ramie Fiber-Reinforced Polylactic-Acid Prepreg: Fabrication and Characterization of Unidirectional and Bidirectional Laminates,” International Journal of Technology, vol. 14, no. 4, p. 888, Jun. 2023, https://doi.org/10.14716/ijtech.v14i4.5940

K. Matsumoto, K. Takemura, R. Kitamura, H. Katogi, T. Tanaka, and H. Takagi, “Cellulose nanofiber-introduced continuous-ramie yarn-reinforced polylactic acid filament for 3D printing: Novel fabrication process and mechanical properties,” Compos Part A Appl Sci Manuf, vol. 176, p. 107836, Jan. 2024, https://doi.org/10.1016/j.compositesa.2023.107836

M. J. John, K. T. Varughese, and S. Thomas, “Green Composites from Natural Fibers and Natural Rubber: Effect of Fiber Ratio on Mechanical and Swelling Characteristics,” Journal of Natural Fibers, vol. 5, no. 1, pp. 47–60, Apr. 2008, https://doi.org/10.1080/15440470801901480

S. D. Varsavas and C. Kaynak, “Weathering degradation performance of PLA and its glass fiber reinforced composite,” Mater Today Commun, vol. 15, pp. 344–353, Jun. 2018, https://doi.org/10.1016/j.mtcomm.2017.11.008

A. Lololau, T. P. Soemardi, H. Purnama, and O. Polit, “Composite Multiaxial Mechanics: Laminate Design Optimization of Taper-Less Wind Turbine Blades with Ramie Fiber-Reinforced Polylactic Acid,” International Journal of Technology, vol. 12, no. 6, p. 1273, Dec. 2021, https://doi.org/10.14716/ijtech.v12i6.5199

A. D. Shieddieque, M. Mardiyati, R. Suratman, and B. Widyanto, “Preparation and Characterization of Sansevieria trifasciata Fiber/High-Impact Polypropylene and Sansevieria trifasciata Fiber/Vinyl Ester Biocomposites for Automotive Applications,” International Journal of Technology, vol. 12, no. 3, p. 549, Jul. 2021, https://doi.org/10.14716/ijtech.v12i3.2841

Y. Wu et al., “Green and sustainable bamboo based composites with high self-bonding strength,” Compos B Eng, vol. 287, p. 111849, Dec. 2024, https://doi.org/10.1016/j.compositesb.2024.111849

Z. Yu et al., “Green and sustainable metal-reinforced bamboo composites with high self-bonding performances,” Ind Crops Prod, vol. 223, p. 120053, Jan. 2025, https://doi.org/10.1016/j.indcrop.2024.120053

R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba, “Natural fiber reinforced polylactic acid composites: A review,” Polym Compos, vol. 40, no. 2, pp. 446–463, Feb. 2019, https://doi.org/10.1002/pc.24747

S. Sharma, A. Majumdar, and B. S. Butola, “Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives,” Int J Biol Macromol, vol. 181, pp. 1092–1103, Jun. 2021, https://doi.org/10.1016/j.ijbiomac.2021.04.108

T. Yu, C. Hu, X. Chen, and Y. Li, “Effect of diisocyanates as compatibilizer on the properties of ramie/poly(lactic acid) (PLA) composites,” Compos Part A Appl Sci Manuf, vol. 76, pp. 20–27, Sep. 2015, https://doi.org/10.1016/j.compositesa.2015.05.010

K. Shimoda and H. Kakisawa, “Novel production route for SiC/SiC ceramic-matrix composites using sandwich prepreg sheets,” J Eur Ceram Soc, vol. 43, no. 3, pp. 805–813, Mar. 2023, https://doi.org/10.1016/j.jeurceramsoc.2022.11.005

M. Omasta, D. Paloušek, T. Návrat, and J. Rosický, “Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees,” Med Eng Phys, vol. 34, no. 1, pp. 38–45, Jan. 2012, https://doi.org/10.1016/j.medengphy.2011.06.014

K. M. Cyr, R. R. Neptune, and G. K. Klute, “Influence of prosthetic foot selection on walking performance during various load carriage conditions,” Clinical Biomechanics, vol. 122, p. 106440, Feb. 2025, https://doi.org/10.1016/j.clinbiomech.2025.106440

A. Eshraghi, Z. Safaeepour, M. D. Geil, and J. Andrysek, “Walking and balance in children and adolescents with lower-limb amputation: A review of literature,” Clinical Biomechanics, vol. 59, pp. 181–198, Nov. 2018, https://doi.org/10.1016/j.clinbiomech.2018.09.017

H. Hobara, H. Sakata, S. Hashizume, and Y. Kobayashi, “Leg stiffness in unilateral transfemoral amputees across a range of running speeds,” J Biomech, vol. 84, pp. 67–72, Feb. 2019, https://doi.org/10.1016/j.jbiomech.2018.12.014

O. N. Beck, P. Taboga, and A. M. Grabowski, “Characterizing the Mechanical Properties of Running-Specific Prostheses,” PLoS One, vol. 11, no. 12, p. e0168298, Dec. 2016, https://doi.org/10.1371/journal.pone.0168298

F. S. Prome, M. F. Hossain, M. S. Rana, M. M. Islam, and M. S. Ferdous, “Different chemical treatments of natural fiber composites and their impact on water absorption behavior and mechanical strength,” Hybrid Advances, vol. 8, p. 100379, Mar. 2025, https://doi.org/10.1016/j.hybadv.2025.100379

S. Alazzawi, W. A. Mahmood, and S. K. Shihab, “Comparative study of natural fiber-Reinforced composites for sustainable thermal insulation in construction,” International Journal of Thermofluids, vol. 24, p. 100839, Nov. 2024, https://doi.org/10.1016/j.ijft.2024.100839

R. Versluys, P. Beyl, M. Van Damme, A. Desomer, R. Van Ham, and D. Lefeber, “Prosthetic feet: State-of-the-art review and the importance of mimicking human ankle–foot biomechanics,” Disabil Rehabil Assist Technol, vol. 4, no. 2, pp. 65–75, Jan. 2009, https://doi.org/10.1080/17483100802715092

J. K. Burnett, Y. T. Choi, H. Li, N. M. Wereley, R. H. Miller, and J. K. Shim, “Vibration Suppression of a Composite Prosthetic Foot Using Piezoelectric Shunt Damping: Implications to Vibration-Induced Cumulative Trauma,” IEEE Trans Biomed Eng, vol. 68, no. 9, pp. 2741–2751, Sep. 2021, https://doi.org/10.1109/TBME.2021.3053374

L. Zhu et al., “Aging performance and mechanism of carbon fiber-reinforced bismaleamide composites under natural aging in marine environments,” Mater Today Commun, vol. 41, p. 110796, Dec. 2024, https://doi.org/10.1016/j.mtcomm.2024.110796

S. Chandra Dubey, V. Mishra, and A. Sharma, “A review on polymer composite with waste material as reinforcement,” Mater Today Proc, vol. 47, pp. 2846–2851, 2021, https://doi.org/10.1016/j.matpr.2021.03.611

V. Prost, W. B. Johnson, J. A. Kent, M. J. Major, and A. G. Winter, “Biomechanical evaluation over level ground walking of user-specific prosthetic feet designed using the lower leg trajectory error framework,” Sci Rep, vol. 12, no. 1, p. 5306, Mar. 2022, https://doi.org/10.1038/s41598-022-09114-y

C. P. McGowan, A. M. Grabowski, W. J. McDermott, H. M. Herr, and R. Kram, “Leg stiffness of sprinters using running-specific prostheses,” J R Soc Interface, vol. 9, no. 73, pp. 1975–1982, Aug. 2012, https://doi.org/10.1098/rsif.2011.0877

D. Xu et al., “A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis,” Gait Posture, vol. 107, pp. 293–305, Jan. 2024, https://doi.org/10.1016/j.gaitpost.2023.10.019

C. L. McDonald, P. A. Kramer, S. J. Morgan, E. G. Halsne, S. M. Cheever, and B. J. Hafner, “Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study,” Gait Posture, vol. 62, pp. 349–354, May 2018, https://doi.org/10.1016/j.gaitpost.2018.03.040

L. Sedran et al., “Quantification of push-off and collision work during step-to-step transition in amputees walking at self-selected speed: Effect of amputation level,” J Biomech, vol. 163, p. 111943, Jan. 2024, https://doi.org/10.1016/j.jbiomech.2024.111943

R. Matter, M. Harniss, T. Oderud, J. Borg, and A. H. Eide, “Assistive technology in resource-limited environments: a scoping review,” Disabil Rehabil Assist Technol, vol. 12, no. 2, pp. 105–114, Feb. 2017, https://doi.org/10.1080/17483107.2016.1188170

M. van der Stelt et al., “Pioneering low-cost 3D-printed transtibial prosthetics to serve a rural population in Sierra Leone – an observational cohort study,” EClinicalMedicine, vol. 35, p. 100874, May 2021, https://doi.org/10.1016/j.eclinm.2021.100874

Ardy Lefran Lololau, “Ramie Fiber-Reinforced Polylactic-Acid Composite Prepreg: The Engineering And The Characterization of Its Mechanical Multiaxial Behavior,” Universitas Indonesia, Depok, 2024.

A. Saveko et al., “Foot-ground reaction force during long-term space flight and after it: walking in active treadmill mode,” Gait Posture, vol. 76, pp. 382–388, Feb. 2020, https://doi.org/10.1016/j.gaitpost.2019.12.033

M. Künzler, S. Herger, E. De Pieri, C. Egloff, A. Mündermann, and C. Nüesch, “Effect of load carriage on joint kinematics, vertical ground reaction force and muscle activity: Treadmill versus overground walking,” Gait Posture, vol. 104, pp. 1–8, Jul. 2023, https://doi.org/10.1016/j.gaitpost.2023.05.018

A. R. N. Al Thahabi et al., “Numerical design and experimental validation of a 3D-printed composite energy-storage-and-return prosthetic foot,” Compos Struct, vol. 358, p. 118907, Mar. 2025, https://doi.org/10.1016/j.compstruct.2025.118907

M. Perkasa et al., “Composite Mechanics Simulation for Design of a Lower Limb Prosthetic using Ramie Fiber-Reinforced Polylactic-Acid Composite,” International Journal of Technology, vol. 16, no. 2, p. 470, Mar. 2025, https://doi.org/10.14716/ijtech.v16i2.7363

G. I. Lopez-Avina, E. Barocio, and J. C. Huegel, “Pseudo fatigue test of passive energy-returning prosthetic foot,” in 2017 IEEE Global Humanitarian Technology Conference (GHTC), IEEE, Oct. 2017, pp. 1–7. https://doi.org/10.1109/GHTC.2017.8239315

N. L. Feng, S. D. Malingam, R. Jenal, Z. Mustafa, and S. Subramonian, “A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites,” Mechanics of Advanced Materials and Structures, vol. 27, no. 8, pp. 645–660, Apr. 2020, https://doi.org/10.1080/15376494.2018.1489086

A. Fotouh, J. D. Wolodko, and M. G. Lipsett, “Fatigue of natural fiber thermoplastic composites,” Compos B Eng, vol. 62, pp. 175–182, Jun. 2014, https://doi.org/10.1016/j.compositesb.2014.02.023

U. A. Mortensen, S. Rasmussen, L. P. Mikkelsen, A. Fraisse, and T. L. Andersen, “The impact of the fiber volume fraction on the fatigue performance of glass fiber composites,” Compos Part A Appl Sci Manuf, vol. 169, p. 107493, Jun. 2023, https://doi.org/10.1016/j.compositesa.2023.107493

S. Asgarinia et al., “Tension–tension fatigue behaviour of woven flax/epoxy composites,” Journal of Reinforced Plastics and Composites, vol. 34, no. 11, pp. 857–867, Jun. 2015, https://doi.org/10.1177/0731684415581527

S. Manteghi, A. Sarwar, Z. Fawaz, R. Zdero, and H. Bougherara, “Mechanical characterization of the static and fatigue compressive properties of a new glass/flax/epoxy composite material using digital image correlation, thermographic stress analysis, and conventional mechanical testing,” Materials Science and Engineering: C, vol. 99, pp. 940–950, Jun. 2019, https://doi.org/10.1016/j.msec.2019.02.041

B. Fazlali, S. V. Lomov, and Y. Swolfs, “Concerns in tension-tension fatigue testing of unidirectional composites: Specimen design and test setup,” Compos B Eng, vol. 272, p. 111213, Mar. 2024, https://doi.org/10.1016/j.compositesb.2024.111213

F. Starker, F. Blab, F. Dennerlein, and U. Schneider, “A Method for Sports Shoe Machinery Endurance Testing: Modification of ISO 22675 Prosthetic Foot Test Machine for Heel-to-toe Running Movement.,” Procedia Eng, vol. 72, pp. 405–410, 2014, https://doi.org/10.1016/j.proeng.2014.06.072

A. L. Pereira, M. D. Banea, J. S. S. Neto, and D. K. K. Cavalcanti, “Mechanical and Thermal Characterization of Natural Intralaminar Hybrid Composites Based on Sisal,” Polymers (Basel), vol. 12, no. 4, p. 866, Apr. 2020, https://doi.org/10.3390/polym12040866

A. Porras and A. Maranon, “Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric,” Compos B Eng, vol. 43, no. 7, pp. 2782–2788, Oct. 2012, https://doi.org/10.1016/j.compositesb.2012.04.039

A. Porras, A. Maranon, and I. A. Ashcroft, “Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina,” Compos Part A Appl Sci Manuf, vol. 81, pp. 105–110, Feb. 2016, https://doi.org/10.1016/j.compositesa.2015.11.008

Downloads

Published

2025-06-30

How to Cite

Sopiyan, I., Soemardi, T. P., Purnomo, H., & Polit, O. (2025). Design, simulation, and static testing of an eco-friendly prosthetic foot using ramie-PLA composite. Teknomekanik, 8(1), 117–135. https://doi.org/10.24036/teknomekanik.v8i1.36572

Issue

Section

Research Articles