Performance Analysis of Water Heating System by Using Double Glazed Flat Plate Solar Water Heater

Authors

  • Andika Putra Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Padang 25131, Indonesia
  • Arwizet K Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Padang 25131, Indonesia
  • Yolli Fernanda Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Padang 25131, Indonesia
  • Delima Yanti Sari Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Padang 25131, Indonesia

DOI:

https://doi.org/10.24036/teknomekanik.v4i1.7872

Keywords:

Solar Energy, Solar Collector, Solar Water, Double Plate Heater, Water Heating

Abstract

Nowadays, the use of solar energy is incredibly important to be increased since solar energy is renewable energy and also does not cause pollution. To harness solar energy, a solar collector device is needed to convert solar energy into heat energy. This study aimed to analyze the heat transfer in the flat plate solar collector which is used as a source of thermal energy in the water heating process for bathing. A double-glazed solar collector was used to absorb solar thermal energy and then transferred it to a water pipe. The pipe material used copper which has a very high conductivity value with an outer diameter of 15.7 mm. The plate collector used aluminium plates because they have high thermal conductivity. The dimensions of the collector frame were 150 cm long, 80 cm wide and 80 cm high. The collector frame was made of wood and covered with an insulator from coconut fibre with a thickness of 8 cm, with a tilt angle of 15˚. Based on the experimental process, the collector temperature was taken by using a thermocouple in order to heat the water which the inlet temperature in a bucket was 28˚C and the outlet water temperature during the experiment was 40˚C.

Downloads

Download data is not yet available.

References

M. Sumarsono. Optimasi Jumlah Pipa-Pemanas Terhadap Kinerja. Jurnal Ilmiah Teknologi Energi. 2012;1(2): 46–55.

V. B. Gawande, A. S. Dhoble, and D. B. Zodpe. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater. Scientific World Journal.2014; 2014..

W. Yaïci and E. Entchev, Performance Prediction of a Solar Thermal Energy System Using Artificial Neural Networks. Applied Thermal Engineering. 2014; 73(1): 1348–1359.

Mohd Anas and Amin ,Md. Performance Study Of Solar Thermal Binary Power Cycles. Jurnal Mekanikal. 2011; 33(3): 56-69 .

C. E. Cong, S. Velautham, and A. N. Darus. Solar Thermal Organic Rankine Cycle As a Renewable Energy Option, Jurnal Mekanikal. 2005.

E. Sciubba, Beyond Thermoeconomics? The Concept of Extended Exergy Accounting and its Application to the Analysis and Design of Thermal Systems. Exergy An International Journal. 2001; 1(2): 68–84.

A. Burhanuddin. Karakteristik Kolektor Surya Plat Datar Dengan Variasi Jarak Kaca Penutup Dan Sudut Kemiringan Kolektor. Universitas Sebelas Maret, 2006.

Z. Chen, M. Gu, and D. Peng. Heat Transfer Performance Analysis of a Solar Flat-Plate Collector With an integrated Metal Foam Porous Structure Filled With Paraffin. Applied Thermal Engineering. 2010; 30(5): 1967-1973.

S. A. Kalogirou. Solar Energy Engineering: Processes and Systems. Progress in Energy and Combustion Science. 2009.

J. A. Duffie and W. A. Beckman. Wiley: Solar Engineering of Thermal Processes, 4th Edition - John A. Duffie, William A. Beckman. 2013.

D. Zhou and C. Y. Zhao. Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials. Applied Thermal Engineering. 2011;31(6): 970–977.

H. Susanto and D. Irawan. Pengaruh Jarak Antara Pipa Pada Kolektor Terhadap Panas Yang Dihasilkan Solar Water Heater ( SWH ). Jurnal Teknik Mesin Univ. Muhammadiyah Metro.2017; 6(7): 84–91.

Y. R. Sekhar, K. V Sharma, and M. B. Rao. Evaluation of Heat Loss Coefficients in Solar. ARPN Journal of engineering and applied sciences. 2009; 4(5): 15–19.

A. Klevinskis and V. Bučinskas. Analysis of a Flat-Plate Solar Collector. Mokslas - Lietuvos ateitis. 2011; 3(3): 39–43.

A. A. M. Sayigh, the Technology of Flat Plate Collectors. University of Waterloo, 1979.

M. Sumarsono. Optimasi Jumlah Pipa-Pemanas Terhadap Kinerja. Jurnal Ilmiah Teknologi Energi, 2012;1(4): 46–55.

S. A. Kalogirou. Solar thermal collectors and applications. Progress in Energy and Combustion Science. 2004; 30(3): 231-295.

A. A. M. SAYIGH. Solar Energy Availability Prediction from Climatological Data. ACADEMIC PRESS, INC. 1977.

R. Irawan. Pembuatan dan Pengujian Kolektor Surya Pelat Datar (FLAT-PLATE COLLECTORS) Kondisi STEADY berdasarkan Standar EN 12975. Universitas Lampung, 16AD.

Y. Tian and C. Y. Zhao. A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals. Energy. 2011;36(9): 5539–5546.

N. Ramadhan, S. Soeparman, and A. Widodo. Analisis Perpindahan Panas pada Kolektor Pemanas Air Tenaga Surya dengan Turbulence Enhancer. Jurnal Rekayasa Mesin. 2017; 8(1): 15–22.

M. Edalatpour and J. P. Solano. Thermal-hydraulic Characteristics and Exergy Performance in Tube-on-Sheet Flat Plate Solar Collectors: Effects of Nanofluids and Mixed Convection. International Journal of Thermal Sciences. 2017; 118(6):397–409.

N. G. Pratiwi, S. W. Hidayat, W. Ardiatna, and C. C. Putri. Comparison of K-Type and T-Type Thermocouples for Stability and Uniformity of Infant Incubator Temperature Testing Based on Iec 60601-2-19, Jurnal Standardisasi. 2019; 21(3): 211.

E. R. Anugrah, R. Lapisa, and K. Arwizet. Heat Transfer Analysis in Heat Exchanger with Various Shifting Media Analisa. 2020;2(6):19–26,.

H. M. Henning and J. Döll. Solar systems for Heating and Cooling of Buildings. Energy Procedia. 2012; 30(5):633–653.

Downloads

Published

2021-05-24

How to Cite

Putra, A., K, A., Fernanda, Y., & Sari, D. Y. (2021). Performance Analysis of Water Heating System by Using Double Glazed Flat Plate Solar Water Heater. Teknomekanik, 4(1), 1–7. https://doi.org/10.24036/teknomekanik.v4i1.7872

Issue

Section

Research Articles